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Whether a summary / compressed representation / coreset
is good depends on the objective
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A coreset represents input data
@ with regard to an objective function
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Coresets and k-means

Whether a summary / compressed representation / coreset
is good depends on the objective

A coreset represents input data
@ with regard to an objective function
@ (e.g.) in order to solve an optimization problem

Notice that
@ there is no common definition
@ many approaches can be viewed as a coreset
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The k-means Problem
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@ Given a point set P C R”,
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: :

The k-means Problem
@ Given a point set P C R”,

@ compute a set C C R”
with |C| = k centers

: :
Coresets for k-means clustering




Introduction Techniques BICO
00@0000 0000000000000 000000 0000000
I I

Coresets and k-means

The k-means Problem
@ Given a point set P C R”,

@ compute a set C C R”
with |C| = k centers

@ which minimizes cost(P, C)
=Y minflc - p|/%,
ceC
peP

the sum of the squared
distances.

: :
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The k-means Problem
@ Given a point set P C R,

@ compute a set C C R”
with |C| = k centers

@ which minimizes cost(P, C)
_ : _pl2
= _min|lc—p|f?,
peP

the sum of the squared
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Coresets and k-means

The k-means Problem
@ Given a point set P C R,

@ compute a set C C R”
with |C| = k centers

@ which minimizes cost(P, C)
_ : _pl2
= _min|lc—p|f?,
peP

the sum of the squared
distances.

|| - || is the Euclidean norm ]
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: :

What k-means cannot cluster
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What k-means cannot cluster

y

In these cases, other objective functions might be better suited )
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: :

Coreset (idea)

@ compute a smaller weighted point set

o that preserves the k-means objective,

@ i.e., the sum of the weighted squared distances is similar
@ for all sets of k centers
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: :

Coreset (idea)

@ compute a smaller weighted point set

o that preserves the k-means objective,

@ i.e., the sum of the weighted squared distances is similar
@ for all sets of k centers

Why for all centers?
@ coreset and input should look alike for k-means
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Coresets and k-means

Coreset (idea)
@ compute a smaller weighted point set
@ that preserves the k-means objective,

@ i.e., the sum of the weighted squared distances is similar
@ for all sets of k centers

Why for all centers?

@ coreset and input should look alike for k-means

@ assume optimizing over the possible centers

o if the cost is underestimated for certain center sets,
then they might be mistakenly assumed to be optimal

Coresets for k-means clustering
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Small summary of the data that preserves the cost function

Coresets (Har-Peled, Mazumdar)

Given a set of points P € R", a weighted set S'is a
(k. ¢)-coreset if for all sets C C R” of k centers it holds that

|costy (S, C) — cost(P, C)| < ecost(P, C)

where costy (S, C) = Y ,c s Mincec w(p)|lp — cl|?.

Coresets for k-means clustering
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Small summary of the data that preserves the cost function

Coresets (Har-Peled, Mazumdar)

Given a set of points P € R”, a weighted set S'is a
(k. ¢)-coreset if for all sets C C R” of k centers it holds that

|costy (S, C) — cost(P, C)| < ecost(P, C)

where costw (S, C) = 3 s Mingec w(p)||p — clf.
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Small summary of the data that preserves the cost function )

Coresets (Har-Peled, Mazumdar)

Given a set of points P € R”, a weighted set S'is a
(k. ¢)-coreset if for all sets C C R” of k centers it holds that

|costy (S, C) — cost(P, C)| < ecost(P, C)

where costw (S, C) = 3 s Mingec w(p)||p — clf.
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Small summary of the data that preserves the cost function )

Coresets (Har-Peled, Mazumdar)

Given a set of points P € R”, a weighted set S'is a
(k. ¢)-coreset if for all sets C C R” of k centers it holds that

|costy (S, C) — cost(P, C)| < ecost(P, C)

where costw (S, C) = 3 s Mingec w(p)||p — clf.

°
N
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Small summary of the data that preserves the cost function

Coresets (Har-Peled, Mazumdar)

Given a set of points P € R”, a weighted set S'is a
(k. ¢)-coreset if for all sets C C R” of k centers it holds that

|costy (S, C) — cost(P, C)| < ecost(P, C)

where costw (S, C) = 3 s Mingec w(p)||p — clf.
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Coreset constructions

Agarwal, Har-Peled and Varadarajan: Coreset concept

Badoiu, Har-Peled and Indyk:
First coreset construction for clustering problems

Har-Peled and Mazumdar, Coreset of size O(ke=9log n),
maintainable in data streams

Har-Peled and Kushal, Coreset of size O(k3¢—(9+1)

Frahling and Sohler: Coreset of size O(ke~9log n),
insertion-deletion data streams

Chen: Coresets for metric and Euclidean k-median and
k-means, polynomial in d, logn and e~

Feldman, Monemizadeh, Sohler: weak coreset poly(k, e~ ")
Langberg, Schulman: O(d?k®/?)
Feldman, S., Sohler: (k/)°()

Coresets for k-means clustering
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Constructing coresets for k-means

: :

Outline

o Different techniques to construct coresets
@ Interlude: Dimensionality reduction

o A practically efficient coreset construction

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 0: The magic formula for k-means
Zhang, Ramakrishnan, Livny, 1996
Forevery P c R and z € RY,

Do lIx—=2P =" llx—u(P)I? + 1P| - [lu(P) — 2|

xepP xeP

where u(P) = >, .p x/|P| is the centroid of P.

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 0: The magic formula for k-means

Implications

@ centroid is always the optimal 1-means solution

@ (much nicer situation than for 1-median!)

@ centroid (plus constant) is an (1, =)-coreset with no error

° 03,00
o o [6)
= + fo .. o)
(©]

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 1: Bounded movement of points

Har-Peled, Mazumdar, 2004
@ move close points to the same position
@ replace coinciding points by a weighted point

/N%. ié’?

: :
Coresets for k-means clustering
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Constructing coresets for k-means

Technique 1: Bounded movement of points

Har-Peled, Mazumdar, 2004
@ move close points to the same position
@ replace coinciding points by a weighted point

—>e N
N e
o
V.,

: :
Coresets for k-means clustering
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Constructing coresets for k-means

Technique 1: Bounded movement of points

Har-Peled, Mazumdar, 2004
@ move close points to the same position
@ replace coinciding points by a weighted point

NG s
4‘1\;:;&

Goal
Overall squared movement small in comparison with cost

: :
Coresets for k-means clustering
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Constructing coresets for k-means

Technique 1: Bounded movement of points
Har-Peled, Mazumdar, 2004
Let OPT be the cost of an optimal k-means solution.
@ move each point x in P to =(x), obtain set Q
@ Ensure that

2
> llx —w(x ||2§1—-OPT
xeP

@ Then | cost(Q) — cost(P)| < ¢ - cost(P)

o = 7(P) is a coreset! (but a large one)

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 1: Bounded movement of points
Har-Peled, Mazumdar, 2004
Let OPT be the cost of an optimal k-means solution.
@ move each point x in P to =(x), obtain set Q
@ Ensure that

2
> llx —w(x ||2§1—-OPT
xeP

@ Then | cost(Q) — cost(P)| < ¢ - cost(P)

o = 7(P) is a coreset! (but a large one)

BICO
0000000

@ Move points, obtain Q, replace points by weighted points
@ Notice: Sum of all movements must be small

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 1: Bounded movement of points

Har-Peled, Mazumdar, 2004

First idea:
°le o Place a grid
«| @ Move all points in the same cell
to one point

: :
Coresets for k-means clustering
e
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Constructing coresets for k-means

Technique 1: Bounded movement of points

Har-Peled, Mazumdar, 2004

First idea:
bl o Place a grid
«| @ Move all points in the same cell
to one point
- ~  Problem:

@ Requires a cell width
of \/e20OPT /(16dn)

— Q((nde=2)9/2) cells

o far too large ‘coreset’

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 1: Bounded movement of points
Har-Peled, Mazumdar, 2004

Exponential grids:
°| o Partition RY into cells

@ Goal: Small cell diameter compared
to optimal clustering cost of points in the cell

— Moving point within a cell is cheap enough

S
<
%

D distance to center > D
+ cell diameter < £2/16D
— movement < £2/16 cost

closest center in optimal solution

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 1: Bounded movement of points
Har-Peled, Mazumdar, 2004

Idea

@ Exponentially growing cells

R @ Diameter grows with distance

Construction

€2 .|OPT/n

@ An exponential grid per center

@ O(log n) rings in each grid

° @ 0(¢79) cells in each ring

° ol — O(klogne~9) cells

Finally: Bicriteria approximation

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 1: Bounded movement of points
Har-Peled, Mazumdar, 2004

Idea

@ Exponentially growing cells

R @ Diameter grows with distance

Construction

€2 .|OPT/n

@ An exponential grid per center

@ O(log n) rings in each grid

° @ 0(¢79) cells in each ring

° ol — O(klogne~9) cells

Finally: Bicriteria approximation

There exists a (k, ¢)-coreset of size O(klog* n/e9).

Coresets for k-means clustering



Constructing coresets for k-means

Frahling, Sohler, 2005

0000000800000 000000

Idea

o Distribute error more
evenly among cells

@ Acellis §-heavy if its
diameter times its number
of points is > 6OPT

smaller heavy cells
contain more points
@ place a coreset point in

every heavy cell that has
no heavy child cells

Coresets for k-means clustering
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Idea

@ Distribute error more
evenly among cells

@ Acellis §-heavy if its

diameter times its number
of points is > 6OPT

smaller heavy cells
contain more points

° @ place a coreset point in

every heavy cell that has
° ¢ no heavy child cells
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Constructing coresets for k-means

Frahling, Sohler, 2005

Idea

o Distribute error more
evenly among cells

S]6)
00
©

A cell is 0-heavy if its
0 0 . diameter times its number,
o o of points is > 0OPT

smaller heavy cells
contain more points

° @ place a coreset point in
o every heavy cell that has
® . no heavy child cells

Coresets for k-means clustering
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Constructing coresets for k-means

Frahling, Sohler, 2005

Idea

o Distribute error more
evenly among cells

00

%o
00

@ Acellis §-heavy if its
) ° diameter times its number
° of points is > §OPT

smaller heavy cells
contain more points

o0
Og_ 0
%
©

° @ place a coreset point in
° every heavy cell that has
° e no heavy child cells

Coresets for k-means clustering
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Frahling, Sohler, 2005

Idea

o Distribute error more
evenly among cells

o
o

o
00

@ Acellis §-heavy if its
oC; ) ° diameter times its number
o o of points is > 0OPT

smaller heavy cells
contain more points

° @ place a coreset point in
o every heavy cell that has
® . no heavy child cells
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Frahling, Sohler, 2005

Idea

@ Distribute error more
evenly among cells

20 ° @ Acellis §-heavy if its

° diameter times its number

of points is > 0OPT

smaller heavy cells
contain more points

° @ place a coreset point in
o every heavy cell that has
® . no heavy child cells
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20 °

Idea

@ Distribute error more
evenly among cells

@ Acellis §-heavy if its

diameter times its number
of points is > 6OPT

smaller heavy cells
contain more points

° @ place a coreset point in

every heavy cell that has
° ¢ no heavy child cells
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Frahling, Sohler, 2005

Idea

@ Distribute error more
evenly among cells

24 @ Acellis §-heavy if its

diameter times its number

of points is > 6OPT

smaller heavy cells
3 5 contain more points

@ place a coreset point in
every heavy cell that has
no heavy child cells

Coresets for k-means clustering



Techniques
0000000 e00000000000

Constructing coresets for k-means

Frahling, Sohler, 2005

Idea

o Distribute error more
evenly among cells

24 @ Acellis §-heavy if its
diameter times its number
of points is > 6OPT

smaller heavy cells
3 5 contain more points
@ place a coreset point in

every heavy cell that has
no heavy child cells

Coresets for k-means clustering



Techniques
0000000 e00000000000

Constructing coresets for k-means

Frahling, Sohler, 2005

Idea

o Distribute error more
evenly among cells

24 @ Acellis §-heavy if its
diameter times its number
of points is > 6OPT

smaller heavy cells
4 5 contain more points
@ place a coreset point in

every heavy cell that has
no heavy child cells
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Constructing coresets for k-means

Frahling, Sohler, 2005

Idea

o Distribute error more
evenly among cells

24 @ Acellis §-heavy if its
diameter times its number
of points is > 6OPT

smaller heavy cells
4 5 contain more points
@ place a coreset point in

every heavy cell that has
no heavy child cells
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Constructing coresets for k-means

Frahling, Sohler, 2005

Idea

o Distribute error more
evenly among cells

24 @ Acellis §-heavy if its
diameter times its number
of points is > 6OPT

smaller heavy cells
4 5 contain more points
@ place a coreset point in

every heavy cell that has
no heavy child cells

There exists a coreset of size O(k log ne=9).

Coresets for k-means clustering
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Constructing coresets for k-means

Har-Peled, Kushal, 2005

Coreset for one-dimensional input

@ Subdivide into O(k?/?) intervals with O((e/k)?>OPT) cost
@ Place two coreset points in each interval with correct mean
@ Most of the intervals are clustered with one center

@ These induce no error!

@ Error for remaining k — 1 intervals can be bounded

e e

Coresets for k-means clustering
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Constructing coresets for k-means

Har-Peled, Kushal, 2005
Coreset for one-dimensional input
@ Subdivide into O(k?/?) intervals with O((e/k)?>OPT) cost
@ Place two coreset points in each interval with correct mean
@ Most of the intervals are clustered with one center
@ These induce no error!
@ Error for remaining k — 1 intervals can be bounded
2 2 ‘ 1 ‘ 11 ‘ 2 2

| | |

Coresets for k-means clustering
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Constructing coresets for k-means

Har-Peled, Kushal, 2005

Coreset for one-dimensional input

@ Subdivide into O(k?/?) intervals with O((e/k)?>OPT) cost
@ Place two coreset points in each interval with correct mean
@ Most of the intervals are clustered with one center

@ These induce no error!

@ Error for remaining k — 1 intervals can be bounded
| 2 2

@ ‘ oO—O0

Coresets for k-means clustering
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Constructing coresets for k-means
Har-Peled, Kushal, 2005
. .
. Multidimensional coreset
o a . .
@ Again, centers of a bicriteria
approximation
. ° @ Shoot O(¢~(9=") rays from
each center
° @ Project points to the rays
o
@ Compute O(k - e—(@-1)
o . .
. one-dimensional coresets
o

Coresets for k-means clustering
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Constructing coresets for k-means

Har-Peled, Kushal, 2005

Multidimensional coreset

@ Again, centers of a bicriteria
approximation

@ Shoot O(¢~(9=") rays from
each center

@ Project points to the rays

@ Compute O(k - e—(@-1)
one-dimensional coresets

Coresets for k-means clustering
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Constructing coresets for k-means

Har-Peled, Kushal, 2005

Multidimensional coreset

@ Again, centers of a bicriteria
approximation

@ Shoot O(¢~(9=") rays from
each center

@ Project points to the rays

@ Compute O(k - e—(@-1)
one-dimensional coresets

Coresets for k-means clustering
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Constructing coresets for k-means

Har-Peled, Kushal, 2005

Multidimensional coreset

@ Again, centers of a bicriteria
approximation

@ Shoot O(¢~(9-1)) rays from
each center

@ Project points to the rays

@ Compute O(k - e—(@-1)
one-dimensional coresets

There exists a (k, ¢)-coreset of size O(k3/e9+1).

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 2: Sampling

Sampling Algorithm
@ Sample points from P uniformly at random
@ The sampled points form the coreset

Around O(k -logn - n- diam(P)/(? - OPT)) samples needed ]

Precise statements due to Haussler (1990),
can be proven by Hoeffding’s inequality J

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 2: Sampling
Chen, 2006

@ compute bicriteria approximation

@ partition input points into subsets with
diam(P’) = cost(P")/|P/|

@ sample representatives from each subset

Coresets for k-means clustering



Techniques BICO
00000000000 e0000000

Constructing coresets for k-means

Technique 2: Sampling
Chen, 2006

@ compute bicriteria approximation

@ partition input points into subsets with
diam(P’) = cost(P")/|P/|

@ sample representatives from each subset

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 2: Sampling
Chen, 2006

@ compute bicriteria approximation

@ partition input points into subsets with
diam(P’) = cost(P")/|P/|

@ sample representatives from each subset

o
a ° °
oe o
o o
o o
(0] ]
ao(k)

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 2: Sampling

Chen, 2006
@ compute bicriteria approximation

@ partition input points into subsets with
diam(P’) = cost(P")/|P/|

@ sample representatives from each subset

O

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 2: Sampling

Chen, 2006
@ compute bicriteria approximation

@ partition input points into subsets with
diam(P’) = cost(P")/|P/|
@ sample representatives from each subset

BO)

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 2: Sampling

Chen, 2006
@ compute bicriteria approximation

@ partition input points into subsets with
diam(P’) = cost(P")/|P/|
@ sample representatives from each subset

B

Coresets for k-means clustering
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Constructing coresets for k-means
: :

Technique 2: Sampling

Chen, 2006
@ Succeeds with constant probability for each center set
@ Discretization of the solution space necessary

Coresets for k-means clustering
e
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Constructing coresets for k-means

Technique 2: Sampling

Chen, 2006
@ Succeeds with constant probability for each center set
@ Discretization of the solution space necessary

There exists a (k, ¢)-coreset of size O(dk? log n/e?).

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 2: Refined sampling strategies

Feldman, Monemizadeh, Sohler, 2007
Importance sampling

@ Sample points with a probability proportional to their
optimum cost

@ Weight points accordingly
@ For points with low optimum cost, sample uniformly
Improvement due to Langberg, Schulman, 2010.

BICO
0000000

Coresets for k-means clustering
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Constructing coresets for k-means

Technique 2: Refined sampling strategies

Feldman, Monemizadeh, Sohler, 2007
Importance sampling

@ Sample points with a probability proportional to their
optimum cost

@ Weight points accordingly
@ For points with low optimum cost, sample uniformly
Improvement due to Langberg, Schulman, 2010.

BICO
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There exists a (k, ¢)-coreset of size O(d?k3:~2).
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Technique 2: Refined sampling strategies

Feldman, Langberg, 2011
Sensitivity based sampling
@ The sensitivity of a point x € P is

Mineec [|x — cf?

Sup :
CCRY,|C|=k ZyeP Mincec ||y — ¢l|?

@ Maximum share of a point in the cost function

= Sampling probabilities proportional to sensitivity J

: :
Coresets for k-means clustering
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Technique 3: Pseudorandomness

Idea

@ If a point set has little structure (it is pseudorandom),
clustering it is similar for all centers

= Clustering it with one center does not induce much error

— Simulate clustering with one center by using the centroid

=

Partition the input into pseudorandom subsets

Coresets for k-means clustering
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Technique 3: Pseudorandomness
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Technique 3: Pseudorandomness

&,
0:0{ .‘o.
»® @

@ Start with partitioning according to an optimal center set
@ Continiously subdivide sets until every set S satisfies:

o Clustering S with k centers is at most a factor (1 + ¢)
cheaper than clustering S with one center

Coresets for k-means clustering
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Technique 3: Pseudorandomness

@ Start with partitioning according to an optimal center set
@ Continiously subdivide sets until every set S satisfies:

o Clustering S with k centers is at most a factor (1 + ¢)
cheaper than clustering S with one center
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Technique 3: Pseudorandomness

@ Start with partitioning according to an optimal center set
@ Continiously subdivide sets until every set S satisfies:

o Clustering S with k centers is at most a factor (1 + ¢)
cheaper than clustering S with one center
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Technique 3: Pseudorandomness

@ Start with partitioning according to an optimal center set
@ Continiously subdivide sets until every set S satisfies:

o Clustering S with k centers is at most a factor (1 + ¢)
cheaper than clustering S with one center
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Technique 3: Pseudorandomness

@ Start with partitioning according to an optimal center set
@ Continiously subdivide sets until every set S satisfies:

o Clustering S with k centers is at most a factor (1 + ¢)
cheaper than clustering S with one center

Constructing coresets for k-means
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Technique 3: Pseudorandomness

@ Start with partitioning according to an optimal center set
@ Continiously subdivide sets until every set S satisfies:

o Clustering S with k centers is at most a factor (1 + ¢)
cheaper than clustering S with one center

@ ...or cost for 1-clustering is negligible (€2OPT)

Constructing coresets for k-means

: :
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: :

Technique 3: Pseudorandomness

o sets on level 1 together cost OPT

: OPT
@ sets on level j cost Aoy

o sets on level log, . €2 have negligible cost (e2OPT)

00 (k'°91+e 5_2) coreset points — independent of nand d

: :
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Technique 4: Dimensionality reduction
Drineas, Frieze, Kannan, Vempala, Vinay, 1999
Let P be a set of n points in R". Consider the best fit subspace

V= i d(p, V)2 c R".
= arg dimr?\l/r)]:kl; (p. V)2 C

Solving the projected instance in V yields a 2-approximation. |

AN

0 2
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Technique 4: Dimensionality reduction
Drineas, Frieze, Kannan, Vempala, Vinay, 1999
Let P be a set of n points in R". Consider the best fit subspace

V= i d(p, V)2 c R".
= arg dimr?\l/r)]:kl; (p. V)2 C

Solving the projected instance in V yields a 2-approximation. |

_ N /

AN

0 2
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: :

Technique 4: Dimensionality Reduction

Drineas et.al.
Solving the instance projected to Vj yields a 2-approximation.
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: :

Technique 4: Dimensionality Reduction

Drineas et.al.
Solving the instance projected to Vj yields a 2-approximation.

Feldman, S., Sohler, 2013
Projecting to Vi) 2) instead yields a (1 + €)-approximation.

There exists a coreset of size O(k*=—*). J

: :
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: :
A practically efficient coreset algorithm

: :

Processing Big Data
@ Most coreset constructions need random access
@ Undesirable / not possible for Big Data or streaming settings

Coresets for k-means clustering
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A practically efficient coreset algorithm

Processing Big Data
@ Most coreset constructions need random access
@ Undesirable / not possible for Big Data or streaming settings

Conversion to a Streaming Algorithm: Merge & Reduce
@ read data in blocks

@ compute a coreset for
each block — s

@ merge coresets in a

OO DD OO HH tree fashion

@ ~» space s-logn
Coreset sizes increase, algorithm has additional overhead

Coresets for k-means clustering
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: :
A practically efficient coreset algorithm

: :

Streaming coreset algorithms (no Merge & Reduce)

@ Coreset construction due to Frahling and Sohler
@ BICO (Fichtenberger, Gillé, S., Schwiegelshohn, Sohler)

Coresets for k-means clustering
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A practically efficient coreset algorithm

Streaming coreset algorithms (no Merge & Reduce)
@ Coreset construction due to Frahling and Sohler
@ BICO (Fichtenberger, Gillé, S., Schwiegelshohn, Sohler)

BICO
@ based on the datastructure of BIRCH

@ works with Technique 1 (bounded movement of points)
@ computes a coreset

@ http://1s2-www.cs.tu-dortmund.de/bico

BIRCH
@ Zhang, Ramakrishnan, Livny, 1997
o SIGMOD Test of Time Award 2006

Coresets for k-means clustering
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A practically efficient coreset algorithm

Coresets for k-means clustering
e




BICO
00®0000

A practically efficient coreset algorithm

%Kj\ z\/\g
1. Find closest reference point
Threshold T 2. If node is not in range
Radius R; 3. Then create a new node

4. Else add to node if possible

5. If not, go one level down,
6. Find closest child, goto 2.

Coresets for k-means clustering
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%Kj\ z\/\g
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4. Else add to node if possible
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A practically efficient coreset algorithm

K = » D"\

ANS Lo

1. Find closest reference point
Threshold T 2. If node is not in range
Radius R; 3. Then create a new node

4. Else add to node if possible
5. If not, go one level down,
6. Find closest child, goto 2.
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Algorithms for comparison
@ StreamKM++ and BIRCH (author’s implementations)

@ MacQueen’s k-means algorithm (ESMERALDA)

BICO

000@000

o’

Data sets

| BigCross | CalTech128 | Census | CoverType | Tower
n 1-107 3-106 2106 6-10° [ 5-10°
d 57 128 68 55 3
nd 7-108 4.108 2.108 3107 1.107
Diagrams

@ 100 runs for every test instance

@ Values shown in the diagrams are mean values

Coresets for k-means clustering
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A practically efficient coreset algorithm

BigCross
6e+12 -
Algorithm
4e+12 - . StreamKMPP
3 . BICO
(@]
. MacQueen
. BIRCH
2e+12 -
0e+00 -

1 1 1 1
15 20 25 30 50
| Number of centers = k
P
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Number of centers = k
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A practically efficient coreset algorithm

BigCross: Time, k=1000 BigCross: Costs, k=1000
20000 -
6e+11 -
15000 -
Algorithm
g‘ MacQueen
5 4e+11-
g 3 BIRCH
8,10000 - 8
g Algorithm
iy
B
2e+11 -
" E— 06+00 -
J J ) i i i ) i
200k 100k 50k 25k 200k 100k 50k 25k
BICO coreset size =m BICO coreset size =m
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BigCross: Time, k=1000 BigCross: Costs, k=1000

20000 -
6e+11 -
15000 -
Algorithm
MacQueen
4e+11 -
® BIRCH
10000 - 8
Algorithm
. BICO
2e+11 -
_

Time [seconds]

0e+00 -

J J ) i i i ) i
200k 100k 50k 25k 200k 100k 50k 25k
BICO coreset size =m BICO coreset size =m

Thank you for your attention!
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