
Exercises - Solutions

Chapter 1

Exercise 1.1. The first two definitions are equivalent, since we follow in both
cases the unique path leading from v to a sink and using only ai-edges leaving
xi-nodes. Shannon’s decomposition rule fv(a) = aif1(a) + aif0(a) prescribes
that we choose the value computed at the ai-successor of an xi-node. Moreover,
the value of a sink is equal to its label. Shannon’s decomposition rule can be
rewritten for an xi-node v with a 0-successor representing f0 and a 1-successor
representing f1 by fv(a) = ite

(

ai, f1(a), f0(a)
)

leading to the special ite straight
line programs described in Definition 1.1.5.ii.

Exercise 1.2. If the depth is bounded by c log n, the size is bounded by nc−1.
The output gate has two predecessors which each have two predecessors and so
on. Some of the gates are perhaps counted more than once. Sometimes we may
read an input before we have considered c log n levels. In any case, the number
of gates is not larger than the number of inner nodes of a binary tree whose
depth is bounded by c log n.

Exercise 1.3. The ideas of the solution of this exercise are also used in the proof
of Theorem 14.2.1. Let the number of levels of the considered BPs be bounded
by the polynomial p(n). Let vij be the jth node at level i, 0 ≤ i ≤ p(n),
1 ≤ j ≤ 5. In particular, let v0,1 be the source and let vp(n),1 be the only 1-sink.
Let Rkl be a 5 × 5-matrix containing at position (s, t) the Boolean function
accepting all inputs such that we reach vlt if we start at vks. If l = k + 1 and
vks is an xi-node, then Rk,k+1 contains at position (s, t) the function 1 iff both
edges leaving vks lead to vk+1,t, the function 0 iff no edge leaving vks leads to
vk+1,t, the function xi iff the 1-edge but not the 0-edge leaving vks leads to
vk+1,t and the function xi otherwise. All these functions can be represented in
depth 1. The essential idea is that Rkl where k < m < l is the Boolean matrix
product of Rkmand Rml. The Boolean matrix product C of an m1×m2-matrix
A and an m2 ×m3-matrix B is defined by

cij =
∨

1≤r≤m2

air ∧ brj , 1 ≤ i ≤ m1, 1 ≤ j ≤ m3.

We reach vlt from vks iff there is some r such that we reach vmr from vks and vlt

from vmr. In our case, m1 = m2 = m3 = 5. Such a Boolean matrix product can
be realized by a Boolean circuit of constant size and depth. We have to realize
R0,p(n) and do this by recursively computing R0,dp(n)/2e and Rdp(n)/2e,p(n) and
by multiplying the results. This leads to a balanced tree with p(n) subcircuits
realizing the Boolean matrix product of 5 × 5-matrices. Hence, the depth is
bounded by O

(

log p(n)
)

= O
(

log n
)

. It is obvious that this method also works
for polynomial-size BPs whose width is bounded by an arbitrary constant c.

1

Exercise 1.4. The number of different objects which can be described by words
whose bit length is bounded by 2n−1 is smaller than 22n−1+1. The number of
Boolean functions f ∈ Bn equals 22n

. Finally,

22n−1+1/22n

= 2 · 2−2n−1

tends even double exponentially fast to 0 as n →∞.

Exercise 1.5. See the proof of Theorem 4.4.3 for a solution of this exercise.
The resulting BDD is even an OBDD.

Exercise 1.6. See the proof of Theorem 2.3.3 for a solution of this exercise.

2

Chapter 2

Exercise 2.1. The first n instructions realize x1, . . . , xn. If a circuit gate
G realizes a function h, we realize h and h. Let g1 and g2 be the functions
represented at the direct predecessors of G. Then h = g1 ⊕ g2 ⊕ a for some
a ∈ {0, 1} or h = (g1 ⊕ a) ∧ (g2 ⊕ b) ⊕ c for some a, b, c ∈ {0, 1}. We already
have computed g1, g1, g2, and g2. Then g1 ⊕ g2 = ite(g1, g2, g2) and g1 ∧ g2 =
ite(g1, g2, 0) and the other cases can be handled similarly to compute h and h
with two instructions.

Exercise 2.2. Let f be represented by a formula of size L(f) and depth d.
An EXOR-gate computing g = g1 ⊕ g2 can be replaced by (g1 ∧ g2) + (g1 ∧ g2),
similarly for negated EXOR-gates. We obtain a formula for f without EXOR-
and NOT-EXOR-gates whose depth is bounded by 2d. This implies that its size
is bounded by 22d. Hence, the main step is to construct a formula for f whose
depth is bounded by d∗ = O

(

log L(f)
)

. Afterwards, it is sufficient to apply the
simulation described above.

Spira has proved (already in 1971) that a binary Boolean formula F of size
l can be simulated by a formula whose depth is bounded above by c log(l + 1)
where c = 2 log−1(3/2) ≈ 5.13. This statement can be proved by induction on
l. The statement is trivial if l ≤ 2. If l ≥ 3, we consider the two subformulas
F1 and F2 which are combined in F by the last gate. Then f = f1 ⊗ f2 for
a Boolean operator ⊗ and the functions f1 and f2 represented by F1 and F2

resp. Let l1 be the size of F1 and l2 the size of F2. W.l.o.g. l1 ≤ l2. Since
l1 + l2 + 1 = l, also 0 ≤ l1 ≤ l/2− 1/2 and 1 ≤ (l − 1)/2 ≤ l2 ≤ l − 1. We start
at the output of F2 and choose always the predecessor which is the root of the
larger subtree. Ties can be broken arbitrarily. Let v be the last node on this
path which is the root of a tree with at least dl2/3e nodes. The subformula with
root v is called F0, it represents f0 and has size l0. We know that l0 ≥ dl2/3e.
Since the two subformulas of F0 contain at most dl2/3e − 1 nodes each,

l0 ≤ 2(dl2/3e − 1) + 1 ≤ 2l2/3 + 1/3 ≤ 2l/3− 1/3.

Let F2,a be the formula obtained from F2 by replacing F0 by the constant
a ∈ {0, 1} and let f2,a be the function represented by F2,a. The size of F2,a

equals
l2 − l0 ≤ l2 − dl2/3e ≤ 2l2/3 ≤ 2l/3− 1/3.

It is easy to see that
f2 = (f0 ∧ f2,1) + (f0 ∧ f2,0)

and
f = f1 ⊗ f2 = f1 ⊗

[

(f0 ∧ f2,1) + (f0 ∧ f2,0)
]

can be computed from f1, f0, f2,1, and f2,0 by a formula of depth 3. Since
the formula size of each of the functions f1, f0, f2,1, and f2,0 is bounded by
2l/3− 1/3, we may apply the induction hypothesis to these formulas. Hence, f

3

can be represented by a formula whose depth is bounded by

c log(2l/3− 1/3 + 1) + 3 = c log(2(l + 1)/3) + 3 =

c log(l + 1) + c log(2/3) + 3 = c log(l + 1).

The last equality follows from the definition of c.

Exercise 2.3. There are 2n−|Si| different assignments to the variables outside

Si. The number of functions on Si is equal to 22|Si|

. Hence,

log si ≤ min{n− | Si |, 2|Si|}

and

ui := (log si)/ log log si ≤ min{(n− | Si |)/ log(n− | Si |), 2|Si|/ | Si |}.

Since the sets Si are disjoint, there are at most 2n log−1 n sets Si whose size is
larger than 1

2 log n. For these sets we estimate ui above by n log−1 n and the
total contribution of these sets to Nechiporuk’s lower bound (Theorem 2.2.4) is
bounded above by 2n2 log−2 n.

For the other sets , | Si |≤ 1
2 log n and we estimate ui above by 2|Si|/ | Si |.

The function x → 2x/x, x ≥ 2, is convex. Hence we get the largest contribution
if as many | Si | as possible are equal to 1

2 log n. Hence, the total contribution

is bounded O(n3/2 log−2 n).

Exercise 2.4. We apply the result of Exercise 2.6 that the BP size and, by
Theorem 2.1.3, also the circuit size of DSAn is bounded by O(n). Hence the
circuit size of x|y| is O(n). The same argument proves that the circuit size of
x|y|+c is O(n). Altogether, we obtain a circuit of size O(n log n) computing
x|y|, . . . , x|y|+k−1. Using the outputs of this circuit as address variables and
x0, . . . , xn−1 as data variables we can compute ISAn(x, y) = xα(x,y) with O(n)
further gates.

Exercise 2.5. See the proof of Theorem 6.1.3 for a solution of this exercise.
The resulting BP is even an FBDD and a DT.

Exercise 2.6. See the proof of Theorem 4.3.2 for a solution of this exercise.
The resulting BP is even an OBDD and a DT.

Exercise 2.7. Let Si contain all variables xj,j+i, 1 ≤ j ≤ n, where the indices
are taken mod n with representatives in {1, . . . , n}. The Z2-determinant does
not change by interchanging rows or columns. Hence, s1 = · · · = sn and it is
sufficient to prove that sn ≥ 2(n2−n)/2. Afterwards, we can apply Theorem 2.2.4.

We replace the variables below the main diagonal by fixed constants and the
variables above the main diagonal by all possible constants. We like to prove

4

that the functions

gc(x11, . . . , xnn) = detn

















x11 c12 c13 · · · c1,n−2 c1,n−1 c1n

1 x22 c23 · · · c2,n−2 c2,n−1 c2n

0 1 x33 · · · c3,n−2 c3,n−1 c3n

. .
0 0 0 · · · 1 xn−1,n−1 cn−1,n

0 0 0 · · · 0 1 xnn

















are different for different settings of the c-constants. This is sufficient, since
we have (n2 − n)/2 c-constants. The statement is obvious for n = 2, since
gc(x11, x22) = x11x22 ⊕ c12. The case n = 3 can be handled by considering the
eight assignments to c12, c13, and c23.

For n > 3, we apply matrix operations which do not change the determinant.
We multiply the second row by x11 and add the result to the first row. The new
first row equals

(0, x11x22 ⊕ c12, x11c23 ⊕ c13, · · · , x11c2n ⊕ c1n).

The first column contains only one non-zero entry, namely an entry 1, in the
second row. Hence, we erase the first column and the second row. Then we
set x11 = 1. This results in an (n − 1) × (n − 1)-matrix of the same type as
described above. By induction hypothesis, gc 6≡ gc′ if cij 6= c′ij for some i ≥ 3
or c1k ⊕ c2k 6= c′1k ⊕ c′2k for some k ≥ 3.

We can apply similar arguments to the last two columns instead of the first
two rows. This leads to the conclusion that gc 6≡ gc′ if cij 6= c′ij for some
j ≤ n− 2 or ck,n−1 ⊕ ckn 6= c′k,n−1 ⊕ c′kn for some k ≤ n− 2.

We are left with the situation that cij = c′ij for all (i, j) /∈ {(1, n− 1), (1, n),
(2, n − 1), (2, n)} and c1k ⊕ c2k = c′1k ⊕ c′2k for k ∈ {n − 1, n}. Now we set
x11 = 0. Then we can erase the first column and the second row of the matrix.
The results for c and c′ are (n− 1) × (n − 1)-matrices M and M ′ which agree
at all entries except perhaps the last two entries of the first row. Since c 6= c′

and c1k ⊕ c2k 6= c′1k ⊕ c′2k for k = n− 1 and k = n, we obtain three cases:
c1,n−1 6= c′1,n−1 and c1n = c′1n, c1,n−1 = c′1,n−1 and c1n 6= c′1n, and c1,n−1 6=
c′1,n−1 and c1n 6= c′1n. We compute the determinants of M and M ′ by expansion
according to the first row. We obtain for the first n−3 entries the same values for
M and M ′. For the entry at position n− 2 we obtain xnnc1,n−1 and xnnc′1,n−1

resp. For the entry at position n − 1 (the last position) we obtain c1n and c′1n

resp. Hence, gc(x)⊕gc′(x) = xnnc1,n−1⊕xnnc′1,n−1⊕c1n⊕c′1n which is different
from 0 in all three considered cases.

Exercise 2.8. We set Si = {xi,i+1, . . . , xin} for i ∈ {1, . . . , n−1}. Let si be the
number of subfunctions of 3-CLIQUEn on Si. In order to obtain a lower bound
on si, we replace all variables deciding about the existence of edges which are
adjacent to one of the vertices 1, . . . , i − 1 by 0. Hence, we consider a graph
on the vertex set Vi = {i, . . . , n}. For the variables xkl, i + 1 ≤ k < l ≤ n,
we choose the 2d(n−i)/2eb(n−i)/2c different assignments leading to a bipartite

5

graph on Vi where the first part contains the vertices i + 1, . . . , i + d(n− i)/2e.
Bipartite graphs do not contain a 3-clique. We claim that these assignments
lead to different subfunctions on Si. Let a and a′ be two such assignments and
w.l.o.g. akl = 1 and a′kl = 0. Let xik = xil = 1 and xij = 0 for all other
j. Together with a we obtain a 3-clique on {i, k, l} and together with a′ we
do not obtain any 3-clique. Hence, log si ≥ d(n − i)/2eb(n − i)/2c. Moreover,
(log si)/ log log si ≥ (1

8 (n − i)2 − O(n))/ log n. Since the sum of all (n − i)2,
1 ≤ i ≤ n− 1, equals 1

3n3 −O(n2), Nechiporuk’s lower bound (Theorem 2.2.4)
leads to the lower bound 1

24n3/ log n−O(n2).

Exercise 2.9. The function 3-CLIQUEn is the disjunction of all xijxikxjk,
1 ≤ i < j < k ≤ n. The number of inner nodes of a BP for xijxikxjk can be
bounded by 3. Now we apply the result of Case 1 in the proof of Theorem 2.1.4.
That result holds for the conjunction of functions but it can be obtained in a
similar way for disjunctions. This leads to an upper bound on the BP size of
3
(

n
3

)

+ 2 (the term 2 describes the 2 sinks).

Exercise 2.10. In order to represent MULk,n it is sufficient to consider (k+1)n
z-levels (or more precisely 1 + · · · + (k + 1) z-levels if k ≤ n − 1 and a similar
formula can be derived for k ≥ n) and we obtain the upper bound 4(k + 1)n2.

Exercise 2.11. We start with the BP for MUL2n−1,n described in the proof of
Theorem 2.3.5. It has size O(n3). After having tested the z-variables of column
l, we have stored the bit pl of the product p = (p2n−1, . . . , p0) and the carry to
the next column. In this situation we test the lth bit of the third number of the
input for multgraphn. If it equals pl, we go on. Otherwise, we reach the 0-sink.

Exercise 2.12. There are s paths p1, . . . , ps from the root of the DT to a
1-leaf. Each path pi corresponds to a monomial mi which equals 1 on input a
iff the input a activates the corresponding path. Obviously, f = m1 + · · ·+ ms.
Moreover, mimj = 0 if i 6= j. This follows, since pi and pj split at some node
v. Let xk be the label of v. Then mi contains xk while mj contains xk or vice
versa.

Exercise 2.13. Let f = m1 + · · · + ms, where m1, . . . , ms are the minterms
of f . We test the variables in the ordering x1, . . . , xn. Whenever the corre-
sponding subfunction is equal to a constant, we stop the computation with the
corresponding leaf. We get at most s paths leading to a 1-leaf. A path can lead
to at most n 0-leaves. Altogether, the number of leaves is bounded by (s + 1)n.
The statement does not hold for s = 0 (we need 1 leaf) and for s = 1 (we need
n + 1 leaves for a minterm). For s ≥ 2, we either have only one path to a 1-leaf
and n + 1 ≤ sn or each path to a 1-leaf contains a node followed by two inner
nodes and contributes at most 1 1-leaf and n− 1 0-leaves to DT(f).

6

Chapter 3

Exercise 3.1. Let si be the number of different subfunctions
fj|x1=a1,... ,xi−1= ai−1

, 1 ≤ j ≤ m, a1, . . . , ai−1 ∈ {0, 1}, essentially depending
on xi. We construct a π-OBDD representing f = (f1, . . . , fm) with si xi-nodes,
1 ≤ i ≤ n, and sn+1 sinks. For each fj , 1 ≤ j ≤ m, we use the same approach
as described before Theorem 3.1.4 for single-output functions. If subfunctions
for fj and fj′ are equal, they are represented by the same node. On the other
hand, the proof of Theorem 3.1.4 shows that each considered subfunction has to
be represented at some node. Since each node can represent only one function,
the statement is proved. There is no choice how to direct the edges.

Exercise 3.2. The algorithm is described essentially already before Theo-
rem 3.1.5. For an efficient implementation, it is possible to work with a DFS
traversal starting at the pointers for the output functions. Nodes not reachable
from these pointers can be eliminated. We use an extra array for all nodes.
Whenever we traverse an edge (v, w), we distinguish whether w is reached for
the first time or has been reached before. For the first case, we check whether
the 0-edge leaving w is complemented. Whenever this is the case, we remove the
compl-bit at the 0-edge leaving w, negate the compl-bit at the 1-edge leaving
w and the compl-bit on the edge (v, w). In the second case, we look up the
information whether the 0-edge leaving w has been complemented in the begin-
ning. Whenever this is the case, we negate the compl-bit on the edge (v, w).
The correctness of this algorithm is obvious. The algorithm needs time O(1) for
each edge.

Exercise 3.3. We consider the parity function x1 ⊕ · · · ⊕ xn and the variable
ordering x1, . . . , xn. (We obtain the same result for each variable ordering.) The
reduced π-OBDD contains one x1-node, two xi-nodes, 2 ≤ i ≤ n, representing
xi⊕· · ·⊕xn and xi⊕· · ·⊕xn⊕1 resp., and two sinks. The size equals 2n+1. Using
complemented edges, the nodes representing xi ⊕ · · · ⊕ xn and xi ⊕ · · · ⊕ xn ⊕ 1
can be merged, since one function is the negation of the other one. The same
holds for the sinks. Hence, the size is reduced to n+1 and 2n+1 = 2(n+1)−1.

Exercise 3.4. A function f is called monotone if a ≤ b implies f(a) ≤ f(b).
Here we define that 0 ≤ 1 and a ≤ b iff ai ≤ bi for all i. It is easy to see
that subfunctions of monotone functions are monotone again. If a monotone
function is not constant, by definition, f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.
In particular, the negation of such a function is not monotone. Hence, for a
non-constant monotone function the use of complemented edges saves exactly
one node, namely the 1-sink.

Exercise 3.5. W.l.o.g. π = id. We use the main ideas of the proof of Theo-
rem 3.1.4. For g := f|x1=a1,... ,xi=ai

we have used α(g) to describe the smallest
index k such that f essentially depends on xk. Here we define α(g) := xi+1, if
i < n, and α(g) = const, if i = n. Then we use the same construction as be-
fore Theorem 3.1.4 to obtain a complete π-OBDD representing f with as many

7

xi-nodes as there are different subfunctions f|x1=a1,... ,xi−1=ai−1
. Moreover, each

subfunction has to be represented and, in a complete π-OBDD, it has to be rep-
resented by an xi-node or by a sink, if i = n + 1. If a complete π-OBDD for f
contains exactly nodes for the subfunctions as described above, the connections
by the edges are uniquely determined.

Exercise 3.6. W.l.o.g. π = id. We construct a complete π-OBDD for f from
the reduced π-OBDD G for f . Let v be a node of G. If v is labeled by xi, we
create new nodes v1, . . . , vi−1. If v is a sink, we create new nodes v1, . . . , vn.
Hence, we create for each node at most n new nodes and the number of old
and new nodes is at most by a factor of n + 1 larger than the number of old
nodes. Now we construct a complete π-OBDD for f based on the nodes of G
and the nodes newly created. Let v be labeled by xi (where we ”label” a sink
by a dummy variable xn+1). Then the edges leaving the new node vj , j < i− 1,
lead to the new node vj+1 and the edges leaving the new node vi−1 lead to the
old node v. Hence, the nodes vj represent the same function as v. An old edge
from a node w labeled by xj to a node v labeled by xi is redirected to vj+1 if
i − j ≥ 2. Here, we again assume sinks to be labeled by xn+1. Moreover, we
assume that pointers for the functions to be represented are edges starting at a
node labeled by x0. The new OBDD respects the variable ordering π = id, is
complete, represents f , and its size is bounded above by (n + 1)|G|.

Exercise 3.7. The constant function 1 has the OBDD size 1. A complete
OBDD obviously needs n+1 nodes. It follows from the solution of Exercise 3.6
that the factor n + 1 is only necessary for constant functions.

Exercise 3.9. The synthesis algorithm for π-OBDDs with complemented edges
is based on the synthesis algorithm for π-OBDDs without complemented edges.
A negation can be performed by negating the compl-bit on the pointer for the
considered function. In general, f = g ⊗ h and we perform a simultaneous
DFS traversal through the OBDDs representing g and h resp. Instead of node
pairs (v, w) we consider ((v, a), (w, b)) where a and b indicate whether we have
reached v resp. w via a complemented edge. We may define terminal cases,
among them at least the cases where v and w are sinks. In the same way as in
the usual synthesis algorithm we omit tests and ”wait” in one of the OBBDs.
Otherwise, if a = 0, we look for the successors v0 and v1 and take into account
the compl-bit on the edges (v, v0) and (v, v1). If a = 1, we negate the compl-
bits on the edges. If a backtracking step leads to a 0-edge with a compl-bit, we
integrate the solution to Exercise 3.2 into this synthesis algorithm. It is obvious
how to integrate the reduction into the synthesis process.

Exercise 3.10. We consider m functions f1, . . . , fm where fi is defined as
multiplexer on its private address vector xi = (xi

0, . . . , xi
k−1) and the common

data vector z = (z0, . . . , zn−1). We use a variable ordering π respecting the
ordering x1, . . . , xm, z of the vectors. The π-OBDD size of each fi is equal to
2n+1. Let f = f1 + · · ·+ fm. We consider the subfunctions with respect to the
different assignments to the variables in x1, . . . , xm. We obtain n+

(

n
2

)

+· · ·+
(

n
m

)

8

different subfunctions namely all functions xi1 + · · ·+ xir
where 1 ≤ r ≤ k and

1 ≤ i1 < · · · < ir ≤ n. This number is a lower bound on the OBDD size of f .

Exercise 3.11. Let the variable ordering π be given by x0, . . . , xk−1,
y0, . . . , yk−1, z0, . . . , zn−1, s where n = 2k. Let fn be the conjunction of s and
the multiplexer on x and z and let gn be the conjunction of s and the multiplexer
on y and z. Obviously, fn ∧ gn = 0. The π-OBDD size of each of the functions
fn and gn equals 2n + 2. Now we consider fn + gn and their subfunctions with
respect to the different assignments to the x- and y-variables. We obtain the
n(n − 1) different subfunctions sxi + sxj , i 6= j, and, moreover the n different
subfunctions sxi + sxi = xi, 1 ≤ i ≤ n.

Exercise 3.12. If f = [(g ⊕ a) ∧ (h ⊕ b)] ⊕ c, f = ite(g, h1, h2) where one of
the functions h1 and h2 is a constant and the other one is h or h. Hence, the
simultaneous DFS traversal runs through the OBDD representing g, the OBDD
representing h where perhaps the labeling of the sinks has to be negated, and
an OBDD representing a constant. This leads to the same node pairs as in the
binary synthesis (if we ignore the component representing the constant). All
terminal cases considered in the binary synthesis can be adapted to the ternary
case. If f = g⊕h⊕a, f = ite(g, h⊕a, h⊕a). Hence, we run through the OBDD
representing g, through the OBDD representing h, and virtually through an
OBDD representing h. Whenever we reach the node v in the OBDD for h, we
may interpret this as reaching v in an OBDD for h. The 0-sink in the OBDD
for h corresponds to the 1-sink in the OBDD for h and vice versa. Again the
terminal cases can be adapted.

Exercise 3.13. It is obvious that f ≤ g iff f ∧ g ≡ 0. Hence, the property
f ≤ g can be checked by the application of the synthesis algorithm to construct
a π-OBDD for f ∧g and to check whether we construct a π-OBDD representing
the constant 0.

Exercise 3.14. We have one processor for each node. The processor corre-
sponding to the inner node v determines the label xi of v and the value ai of xi.
Then it computes the ai-successor of v and writes it into a node array at posi-
tion v. The processor corresponding to the sink v writes v into the position v
of the node array. In both cases, the processor remembers the node written in
the last round. Then we repeat for dlog ne times the following procedure for all
processors. The processor for node v looks at the array position v′ where v′ is
the node written in the last round. If the processor for node v reads v∗, the
processor writes v∗ into position v and remembers v∗. It is obvious that this
algorithm is an exclusive write (EW) one. Moreover, after i steps, the processor
at the root knows the node in distance 2i on the path activated by the given
input. If a sink is reached in less then 2i steps, the processor knows this sink.
The length of the activated path is bounded by n. Hence, after dlog ne steps
the processor at the root knows the solution of the evaluation problem.

Exercise 3.15. The satisfiability problem is trivial for reduced OBDDs. In
the general case, we have to determine whether there is a directed path from

9

the source to the 1-sink. We are faced with the well-known transitive closure
bottleneck for PRAMs. We know that the length of paths in an OBDD is
bounded above by n. It is easy to construct the adjacency matrix A of the
graph which describes the OBDD. We may forget the labeling of the nodes and
edges. The Boolean matrix product D of two Boolean m ×m-matrices B and
C is defined by

dij = bi1c1j + bi2c2j + · · ·+ bimcmj .

Each dij can be computed by m processors, one responsible for bikckj , in con-
stant time. First, the processor computes the product bikckj . Then the processor
writes (common writing) 1 into an array for the result iff bikckj = 1. This array
is initialized with 0-entries. Hence, the disjunction can be computed within one
step. The different d-entries can be computed independently (since common
reading is allowed). Hence, m3 processors can realize the Boolean matrix prod-
uct in constant time. We like to compute the n-th power of A assuming that
there is an edge from each sink leading back to the sink. Hence, in this case
m = |Gf | and we have to perform dlog ne matrix multiplications to compute

sequentially A2, A4, A8, . . . , A2dlog ne

.

Exercise 3.16. We work with |Gf | · |Gg| processors and, therefore, we have
one processor for each node pair (v, w) ∈ Vf × Vg. We compute the OBDD
Gh = Gf × Gg (see the definition below Theorem 3.3.4) as the result of the
binary synthesis. The processor responsible for (v, w) has to compute the label
of this node and the 0-successor and the 1-successor of this node. The processor
reads xj := label(v) and xk := label(w) (the label of a sink is interpreted as
xn+1) and the label of (v, w) is defined as xi where i = min{j, k}. If i = n+1, the
node (v, w) is a sink whose label equals label(v)⊗ label(w) (⊗ is the operator of
the binary synthesis). If i ≤ n, the processor computes the successors v0, v1, w0,
and w1 of v and w resp. The processor defines the 0-successor of (v, w) as
(v∗0 , w∗

0) where v∗0 = v0, if v is labeled by xi, and v∗0 = v otherwise. The node
w∗

0 and the 1-successor (v∗1 , w∗
1) are defined similarly.

Exercise 3.17. Let s = |Gf |. We apply the solution of Exercise 3.15 to
eliminate all nodes not reachable from the source. Let G = (V, E) be this
OBDD containing only nodes reachable from the source. The next aim is to
determine for each each node pair (v, w) whether fv = fw. We apply the
solution of Exercise 3.16 to construct an OBDD G∗ for f ⊕ f . Remember that
this OBDD contains the node pair (v, w) representing fv ⊕ fw. We again apply
the solution of Exercise 3.15 to the OBDD G∗. Since the size of G∗ is bounded by
s2, we know that s6 processors and time O(log s) are sufficient for this purpose.
Afterwards, we can determine for each (v, w) whether fv ⊕ fw = 0, i.e., whether
fv = fw. The last step is to construct the reduced OBDD. For each node v of
G we have an array describing which nodes represent the same function as v.
Using s processors for each node v the node l(v) with the largest number among
the nodes equivalent to v can be determined in time O(log s). Here we assume
a topological ordering of the nodes (which otherwise can be easily computed).
The reduced OBDD Gred for f contains all the nodes v where v = l(v). These

10

nodes have the same labels as in G. The 0-successor of v in Gred is l(v0) if v0

is the 0-successor of v in G, similarly for the 1-successor. The whole algorithm
runs in time O(log s) using s6 processors.

Exercise 3.18. W.l.o.g. π = id. Let G∗ be the reduced {0, 1, ∗}-representation
of f . We consider f as completely specified function f : {0, 1}n → {0, 1, ∗}. Let
v be a node of G∗ labeled by xi. Then fv is a subfunction for some assignment
(a1, . . . , ai−1) to the first i−1 variables. G∗ has at most three sinks with labels
from {0, 1, ∗}. Let Gon and Gdc be reduced π-OBDDs representing fon and fdc

resp. and let G′ be the product graph after the elimination of not reachable
nodes. The product graph has sinks labeled by (0, 0), (0, 1), (1, 0) and (1, 1).
Since it is impossible that fon(a) = fdc(a) = 1, the sink (1, 1) is not reachable.
The sink (0, 0) corresponds to the 0-sink of G∗, (1, 0) corresponds to the 1-sink,
and (0, 1) corresponds to the ∗-sink. This identification of the images leads to
a correspondence of f and (fon, fdc). The partial assignments a and b lead to
different subfunctions of fon or fdc iff they lead to different subfunctions of f .
This implies that the OBDD obtained from G′ by reduction is isomorphic to G∗.
The last step is to prove that G′ is reduced. If the partial assignments a and b
lead to the same subfunctions of (fon, fdc), they do so for fon and fdc and we
reach for a and b the same node in Gon and the same node in Gdc. This implies
that we reach for a and b the same node in G′ and G′ is reduced.

Exercise 3.19. The solution of this exercise has been obtained by Benedikt
Stockebrand in his Master Thesis.

We start with general considerations. Let m = 2k, z = (zk−1, . . . , z0), and
x = (x1, . . . , xn). We fix the variable ordering zk−1, . . . , z0, x1, . . . , xn. We
define ei,r, 0 ≤ i ≤ 2r − 1, on r variables by ei,r(yr−1, . . . , y0) = 1 iff |y| = i.
Let (f0, c0), . . . , (fm−1, cm−1) be a sequence of incompletely specified Boolean
functions on x such that cicj = 0 and fi 6= fj , if i 6= j. Let (f∗, c∗) be defined
by

f∗(x, z) =
∨

0≤i≤m−1

ei,k(z)fi(x)

and
c∗(x, z) =

∨

0≤i≤m−1

ei,k(z)ci(x).

We apply the tsm heuristic levelwise top-down.
Claim: After k levels we consider (F, C) defined by

F (x, z) =
∨

0≤i≤m−1

fi(x)ci(x)

and
C(x, z) =

∨

0≤i≤m−1

ci(x).

First we prove the claim. It is obvious that

c∗|zk−1=0(x, z) =
∨

0≤i≤m/2−1

ei,k−1(zk−2, . . . , z0)ci(x)

11

and
c∗|zk−1=1(x, z) =

∨

0≤i≤m/2−1

ei,k−1(zk−2, . . . , z0)ci+m/2(x)

are disjoint. Hence, by Lemma 3.6.3, the new care function is c∗∗ = c∗|zk−1=0 +

c∗|zk−1=1 and the new function is f∗∗(x, z) = f∗|zk−1=0c
∗
|zk−1=0 + f∗|zk−1=1c

∗
|zk−1=1.

Let f ′i and c′i, 0 ≤ i ≤ m/2− 1, be defined by

f ′i(x) = fi(x)ci(x) + fi+m/2(x)ci+m/2(x)

and
c′i(x) = ci(x) + ci+m/2(x).

Then we can conclude that

f∗∗(x, z) =
∨

0≤i≤m/2−1

ei,k−1(zk−2, . . . , z0)f
′
i(x)

and
c∗∗(x, z) =

∨

0≤i≤m/2−1

ei,k−1(zk−2, . . . , z0)c
′
i(x).

Moreover, c′ic
′
j = 0 and f ′i 6= f ′j , if i 6= j. Hence, we are in the same situation

as in the beginning and can argue on all the levels in a similar way. It follows
that we finally obtain (F, C). (End of the proof of the claim.)

Now we define f0, c0, . . . , fm−1, cm−1 on (x, s) = (xm−1, . . . , x0, sk−1, . . . , s0)
using this sequence as variable ordering. Let

fi(x, s) = xi

and
ci(x, s) = ei,k(s).

The conditions cicj = 0 and fi 6= fj , if i 6= j, are fulfilled. The OBDD for
f∗ starts with a complete binary tree on the z-variables (size O(m)) followed
by OBDDs for fi of size 1 each. The whole OBDD size of f ∗ is O(m). The
OBDD size of each ei is O(k) = O(log m) and, therefore, the OBDD size of c∗

is O(m log m).
Now we investigate the functions F and C obtained after k applications of

the tsm heuristic. The conditions of the claim are fulfilled. The function C is
the constant 1. The function F is the multiplexer with a bad variable ordering
leading to an OBDD size of Ω(2m), an exponential blow-up. Since C = 1, the
function is completely specified and the further application of the tsm heuristic
does not change anything.

Exercise 3.20. We apply the solution of Exercise 3.18. The care function c is
the negation of the don’t care function. Hence, the statement of Exercise 3.18
holds also for c instead of fdc. Instead of a representation of (f, c) we work with
the {0, 1, ∗}-representation of the incompletely specified function whose OBDD

12

size is bounded by the product of the OBDD size for f and the OBDD size
for c and, therefore, polynomially bounded in the input size. The osm criterion
uses (F2, c2) as common extension of (F1, c1) and (F2, c2) if the conditions of
the criterion are fulfilled. This implies that no new OBDD nodes are created,
only some pointers are redirected which may lead to the application of reduction
rules.

Exercise 3.21. Let G be a reduced π-OBDD representing f . For each
i ∈ {1, . . . , n}, we construct in time O(|G|) π-OBDDs for f|xi=0 and f|xi=1.
Afterwards, we apply the solution of Exercise 3.13 to check whether f|xi=0 ≤
f|xi=1. We claim that f is monotone iff f|xi=0 ≤ f|xi=1 for all i. The whole
algorithm runs in time O(n|G|2). It is obvious that f|xi=0 ≤ f|xi=1 if f is mono-
tone. Now we assume that f|xi=0 ≤ f|xi=1 for all i. We have to prove that
f(a1, . . . , an) ≤ f(b1, . . . , bn) if ai ≤ bi for all i. Let i1 be the smallest index
where ai1 = 0 and bi1 = 1. Then f(a1, . . . , an) ≤ f(a1, . . . , ai1−1, 1, ai1+1,
. . . , an), since f|xi1

=0 ≤ f|xi1
=1. We go on in the same way until we have

switched from a to b.

13

Chapter 4

Exercise 4.1. We consider the carry bit sn+1 of ADDn+1(xn−1, . . . , x0, 1,
yn−1, . . . , y0, 1). If |x| < |y|, there is some index i such that xi = 0, yi = 1, and
xj = yj for j > i. This implies that xi = yi = 1 and exactly one of xj and yj

is equal to 1 for j > i. Obviously, this leads to a carry. If |x| = |y|, we use the
same arguments. Here the carry is generated from the least significant 1-entries.
If |x| > |y|, there is some index i such that xi = 1, yi = 0, and xj = yj for
j > i. This implies that xi = yi = 0 and exactly one of xj and yj is equal to 1
for j > i. Obviously, this prevents a carry.

Exercise 4.2. We like to compute the sum of the n-bit numbers x1, . . . , xn using
MUL2n2 . The first factor p1 is the concatenation of 0n, x1, 0n, x2, . . . , 0n, xn

where 0n consists of n zeros (dlog ne zeros would be sufficient). The second
factor p2 repeats the string 02n−11 for n times. Using the school method for
multiplication we have to compute the sum of p1, p1 shifted by 2n positions,
p1 shifted by 4n positions, . . . , p1 shifted by (n − 1)2n positions. If we write
these numbers into a table like in Figure 2.3.1a, we find 3n positions containing
0nx10n, 0nx20n, . . . , 0nxn0n. The zeros at the end ensure that no carry from
less significant positions has influence on the positions where we compute the
sum of x1, . . . , xn. The zeros at the beginning ensure that we find the carry of
this addition in the result.

Exercise 4.3. We use a similar idea as for the solution of Exercise 4.2. Here
p1 = 0nx10

nx20
n . . . 0nxn and p2 = 0nyn0nyn−10

n . . . 0ny1. Then we find in
the table after the bitwise multiplication a column containing (besides zeros)
the entries x1y1, x2y2, . . . , xnyn. We compute the sum of this column without
a carry from less significant positions. The last bit of this sum is equal to
x1y1 ⊕ · · · ⊕ xnyn.

Exercise 4.4. The branching program value problem BPVP is defined on
inputs (G, a) such that a ∈ {0, 1}n for some n and G is a BP with n2 inner
nodes and 2 sinks such that the inner node with number jn + i, 0 ≤ j ≤ n− 1,
1 ≤ i ≤ n, is labeled by xi. The output is the result of the evaluation problem
on the BP G (the source is the node with number 1) and the input a.

Let f = (fn) ∈ P-BP. Then fn can be represented by a BP Gn of polynomial
size p(n). W.l.o.g. p(n) ≥ n. It is possible to embed Gn into a BP G′

n as
described in the definition of BPVP. If we work with p(n) variables, we only
use the first n variables and consider the further variables as dummy variables.
The jth node v of Gn is simulated by the node (j − 1)p(n) + i if the label of
v is equal to xi. In order to compute fn(a), we can apply BPVP to the input
consisting of G′

n and a′ = (a1, . . . , an, 0, . . . , 0). Hence, f ≤rop BPVP.
We still have to prove that BPVP ∈ P-BP. We may repeat the test of

variables. We check the variables in the following ordering: x1, encoding of
node 1, x2, encoding of node 2, . . . , xn, encoding of node n, x1, encoding of
node n+1, . . . , xn, encoding of node 2n, . . . , x1, encoding of node (n−1)n+1,
. . . , xn, encoding of node n2. For each pair (xi, encoding of node (j − 1)n + i)

14

we use the following gadget. We compute the binary number of the xi-successor
of this node. Each leaf of this gadget is replaced with the source of the gadget
of the corresponding successor node, if the successor is an inner node, or by the
corresponding sink. The source of the gadget for (x1, encoding of node 1) is the
source of the whole BP. It is obvious that we represent BPVP in polynomial
size.

Exercise 4.5. Obviously, the number of sinks is reduced from 2 to 1. Using
the remarks following the proof of Lemma 4.4.2 we conclude that it is sufficient
to consider the OBDD for a single sum bit si. Let i ≤ n− 1. There is only one
yj-node, 0 ≤ j ≤ i, and no saving is possible on the y-levels. On the xj-level,
0 ≤ j < i, we know cj−1. If j < i and xj = yj = · · · = xi = yi = 0, then
si = 0 independently from cj−1. Hence, the subfunction for cj−1 = 0 is not
the negation of the subfunction for cj−1 = 1. If j = i, we have to represent
xi ⊕ yi and its negation xi ⊕ yi ⊕ 1. This leads to a further saving of one node.
Altogether, the reduced π-OBDD with complemented edges for si has two inner
nodes less than the reduced π-OBDD without complemented edges. We omit
similar arguments for sn.

Exercise 4.6. The proof of Theorem 4.4.3 describes which functions are rep-
resented in the reduced π-OBDD. We have two xn−1-nodes representing sn and
sn−1 and, obviously, sn 6= sn−1. We have three xi-nodes, 0 ≤ i ≤ n − 2,
representing si, ci, and ci. Hence, we save one node on each of these levels,
altogether n−1 nodes. On the yn−1-level, the functions cn−2yn−1, cn−2 +yn−1,
cn−2 ⊕ yn−1, and cn−2 ⊕ yn−1 are represented and one node can be saved. On
the yi-level, 1 ≤ i ≤ n − 2, we may save three of the six nodes representing
ci−1 ⊕ yi, ci−1 ⊕ yi, ci−1yi, ci−1 + yi, ci−1yi, and ci−1 + yi. On the y0-level we
may save one of the two nodes representing y0 and y0. Moreover, we save one
of the two sinks. Altogether, we save n− 1+1+3(n− 2)+1+1 = 4n− 4 nodes
and we can represent ADDn, n ≥ 2, with 5n− 1 nodes.

Exercise 4.7. We consider the inputs x = (sign(x), xn−1, . . . , x0) and y =
(sign(y), yn−1, . . . , y0) and want to represent the sum s = (sign(s), sn, sn−1,
. . . , s0). A sign bit 1 indicates that the number is non-negative while a sign bit
0 indicates that the number is non-positive. We choose the variable ordering

sign(x), sign(y), xn−1, yn−1, xn−2, yn−2, . . . , x0, y0.

This sign(x)-level contains n + 2 nodes, since the n + 2 outputs are different
functions essentially depending on sign(x). The sign(y)-level contains 2n + 4
nodes, since all considered subfunctions are different and depend essentially on
sign(y). First, we investigate the output sign(s). If sign(x) = sign(y), we reach
the sink with label sign(x). If sign(x) = 1 and sign(y) = 0, we define sign(s) = 1
iff |x| ≥ |y| (sign(s) is only incompletely specified, since the number 0 has two
representations). If sign(x) = 0 and sign(y) = 1, we define sign(s) = 1 iff
|x| < |y|. Hence, we have to represent the predicate |x| ≥ |y| and its negation
(which is useful if we work with complemented edges). In order to represent the
predicate |x| ≥ |y|, we need the following number of nodes:

15

- one xi-node for the situation xn−1 = yn−1, . . . , xi+1 = yi+1, (in all other
cases we have reached a sink), this node represents the predicate
|(xi, . . . , x0)| ≥ |(yi, . . . , y0)|,

- two yi-nodes for the situations xn−1 = yn−1, . . . , xi+1 = yi+1 and xi = 0
resp. xi = 1, if i ≥ 1, and one y0-node (since for x0 = 1 we know the
result).

We have 3n+ 6 nodes on the sign-levels and further 6n− 2 nodes on the x- and
y-levels for the representation of sign(s).

If sign(x) = sign(y), the outputs sn, . . . , s0 have the same values as for
ADDn. W.l.o.g. we assume n ≥ 2. Then the proof of Theorem 4.4.3 shows that
we need the following nodes

- 2 xn−1-nodes representing sn and sn−1,

- 3 xi-nodes, 0 ≤ i ≤ n− 2, representing si, ci, and ci,

- 4 yn−1-nodes representing cn−2yn−1, cn−2 + yn−1, cn−2 ⊕ yn−1, and
cn−2 ⊕ yn−1,

- 6 yi-nodes, 1 ≤ i ≤ n − 2, representing ci−1 ⊕ yi, ci−1 ⊕ yi, ci−1yi,
ci−1 + yi, ci−1yi, ci−1 + yi, and

- 2 y0-nodes representing y0 and y0.

For i ≥ 1, these nodes cannot be merged with nodes for the representation
of the predicate |x| ≥ |y|, the reason is that the above functions are symmetric
with respect to xi−1 and yi−1 (their roles can be interchanged without changing
the output) which is not the case for the predicate |x| ≥ |y|.

If sign(x) 6= sign(y), we have to represent (s∗n, s∗n−1, . . . , s
∗
0) =

∣

∣|x| − |y|
∣

∣. In
particular, s∗n = 0. Using the school method for subtraction, we need another
type of carry. This carry c∗i equals 1 iff |(xi, . . . , x0)| < |(yi, . . . , y0)|. We can
conclude that

s∗i = xi ⊕ yi ⊕ c∗i−1

and

c∗i = xi(yi + c∗i−1) + xiyic
∗
i−1.

Hence, we need

- 1 xn−1-node representing s∗n−1,

- 3 xi-nodes, 0 ≤ i ≤ n− 2, representing s∗i , c∗i , and c∗i ,

- 2 yn−1-nodes, representing yn−1 ⊕ c∗n−2 and yn−1 ⊕ c∗n−2,

16

- 6 yi-nodes, 1 ≤ i ≤ n−2, representing yi⊕c∗i−1, yi⊕c∗i−1, yi+c∗i−1, yi + c∗i−1,

yic
∗
i−1, and yic∗i−1, and

- 2 y0-nodes, representing y0 and y0.

The x-nodes for the representation of sign(s) represent c∗0, . . . , c
∗
n−2 , c∗0, . . . ,

c∗n−2, and c∗n−1. Hence, we may merge all nodes except the 3 nodes on the xn−1

and yn−1-level with the corresponding nodes for the case sign(x) 6= sign(y). All
other functions are different as long as i ≥ 1. Alltogether, we can estimate the
OBDD size up to an additive constant by 3n (sign levels), 6n (x-levels), and
12n (y-levels). Hence, the OBDD size equals 21n±O(1).

Exercise 4.8. It is sufficient to store the partial sum of the values of the
considered bits, e.g., the bit xi

j has the value xi
j2

j . The output has length
n + dlog ne. Hence, the number of different partial sums is bounded by O(n2n).
For the representation of si it is sufficient to store the last i+1 bits of the partial
sum. Hence, the total size of one level is bounded above by

21 + 22 + · · ·+ 2ndlog ne = O(n2n).

leading to an upper bound of O(n32n).
For a lower bound we consider the output sn−1. After having tested the first

row, we may have 2n different partial sums. Before we start to test the last row,
we have to distinguish all partial sums. This follows from the consideration of
ADDn and the bad variable ordering xn−1, . . . , x0, yn−1, . . . , y0 in Lemma 4.5.1.
Hence,we have at least n2 − 2n levels of size 2n each leading to a lower bound
of Ω(n22n).

Exercise 4.9. The sum bit si essentially depends on all the input bits xj
k,

1 ≤ j ≤ n, 0 ≤ k ≤ i. We describe the situation after the test of xj
k in the

following figure. We have tested the variables of A. In order to represent si

A B

sum(B)

sum(A)

si

xj
k

only the bits at the positions k, . . . , i of the current partial sum are of interest.
The value of si is influenced by the variables of B only via its partial sum called
sum(B). If we compute the sum of sum(A) and sum(B) and if we are interested

17

in si, we may forget the bits of sum(B) at all positions p < k. Let p∗ be the
highest position where sum(B) may have the value 1. Then p∗ − k ≤ dlog ne.
Moreover, if sum(A) has a 0-entry at one of the positions p∗ + 1, . . . , i − 1,
sum(B) cannot have influence on the final value of si. In these cases we have
reached a sink. We investigate the other cases. Then it is sufficient to store the
value of si and the bits of sum(A) at the positions k, . . . , p∗. This leads to an
upper bound of O(n) on the size of each x-level for each output and that implies
an upper bound of O(n3) for each output bit. For most output bits and most
levels we also obtain an Ω(n) lower bound leading to an Ω(n3) lower bound for
most outputs. If the width of B is at least 2, there at least dlog ne − 2 carry
positions which can take each value. If the width of A is at least dlog ne we have
to distinguish Ω(n) situations.

The crucial observation is that we can merge many nodes in an SBDD for
all outputs. Let us consider si and si′ and the situation after the test of xk

j . Let
a and a′ be assignments of the tested variables. We consider the subfunction of
si with respect to a and the subfunction of si′ with respect to a′. Let a lead
to sum(A) and let a′ lead to sum′(A′). If sum(A) has at position i the same
value as sum′(A′) at the position i, if these values are followed by ones up to
position p∗+1 and if sum(A) and sum′(A′) have the same values at the positions
k, . . . , p∗, the assignments a for si and a′ for si′ lead to the same SBDD node.
This implies an upper bound of O(n3) for the SBDD size.

Exercise 4.10. If we replace the first k bits and the last l bits of the two
factors by zero, we obtain the multiplication of (n − k − l)-bit numbers. The
former output at position (n−1+ l−k) is the new middle bit of multiplication.
We always choose l = 0 or k = 0. Hence, by Theorem 4.5.2, the OBDD size
of MULi,n, i ≤ n − 1, is bounded below by 2(i+1)/8. This lower bound is
exponential, if i = Ω(nε), and not polynomial, if ω(log n). We obtain the same
lower bound for MUL2n−1−i,n as for MULi,n.

Exercise 4.11. If i = O(log n), MULi,n essentially depends on O(log n) vari-
ables and the OBDD size is bounded above by 2O(log n) = nO(1).

Exercise 4.13. The solution of this exercise is contained in the proof of The-
orem 5.3.1.

Exercise 4.14. We apply the read-once projections contained in the proof of
Theorem 4.6.2. The OBDD size of MULn is bounded above by the OBDD size
of SQU3n+2. Hence, the OBDD size of SQUn is bounded below by the OBDD
size of MULb(n−2)/3c. The explicit lower bound is by Theorem 4.5.2 2a(n) where
a(n) = b(n− 2/3c/8 = n/24 −O(1). We obtain SQUn as read-once projection
from INV10n. Hence, the OBDD size of INVn is bounded below by 2b(n) where
b(n) = b(n− 2)/3c/80 = n/240−O(1). The same lower bound holds for DIVn.

Exercise 4.15. The proof of Theorem 4.7.2 is performed by counting the
different subfunctions. A non-constant symmetric function essentially depends

18

on all its variables and subfunctions of symmetric functions are symmetric on
the remaining variables. We always use the variable ordering x1, . . . , xn.

Threshold functions. We only have to consider the function Tk,n, since

Tn+1−k,n(x1, . . . , xn) = ¬Tk,n(x1, . . . , xn).

We need 2 sinks. We have i xi-nodes, 1 ≤ i ≤ k, since we have to count the
number of ones and since we reach the 1-sink after having seen k ones. We also
have i xn+1−i-nodes, 1 ≤ i ≤ k. If we have still i variables not yet tested, we
have reached the 0-sink if we have seen less than k − i ones. All other levels
have a size of k for the number of 0, . . . , k− 1 ones already seen. The total size
equals

2(1 + · · ·+ k) + (n− 2k)k + 2 = k(k + 1) + nk − 2k2 + 2 = k(n− k + 1) + 2.

Exact counting. The size of Ek,n is equal to the size of En−k,n, since we
may count zeros instead of ones. Hence, we only consider Ek,n. We have two
sinks. We have i xi-nodes, 1 ≤ i ≤ k + 1, since we have to distinguish whether
we have seen 0, . . . , k ones. Only if we have seen more than k ones we already
reach the 0-sink. The last level contains 2 nodes distinguishing whether we have
seen k−1 or k ones. A generalization of this argument shows that the last levels
contain k +1, . . . , 2 nodes and each other level contains k +1 nodes. Hence, the
total size equals

(1 + · · ·+ k) + (2 + · · ·+ k) + (n− 2k + 1)(k + 1) + 2 =

k(k + 1)− 1 + nk − 2k2 + k + n− 2k + 1 + 2 = nk − k2 + n + 2.

Modular counting We count the number of ones mod k. The size of the
levels increases from 1 to k and at the end it decreases from k to 2. Hence, the
total size equals

(1 + · · ·+ k) + (2 + · · ·+ k) + (n− 2k + 1)k + 2 =

k(k + 1)− 1 + nk − 2k2 + k + 2 = nk − k2 + 2k + 1.

Exercise 4.16. First, we compute the threshold value :

2t =
∑

1≤i≤n

wi =
∑

1≤i≤n/2

2i−1 +
∑

n/2+1≤i≤n

(2n/2 − 2n−i)

= 2n/2 − 1 + (n/2)2n/2 − (2n/2 − 1)

and

t = n2n/2/4.

If the variables are ordered according to descending weights, the variable order-
ing equals xn, . . . , x1. We consider the different assignments to xn, . . . , xn/2+1

19

with the restriction that exactly n/4 variables get the value 1. These are
(n/2
n/4

)

different partial assignments. The partial sums agree in the term (n/4)2n/2 = t
but they have different negative terms −∑

n/2+1≤i≤n xi2
n−i. The absolute

value of this negative term has the binary representation xup = (xn/2+1, . . . , xn).
Let us consider two different of these assignments namely a and b, w.l.o.g.
|aup| > |bup|. We claim that we obtain different subfunctions for a and b leading
to the proposed lower bound. We consider the common extension by the as-
signment (x1, . . . , xn/2) = (bn/2+1, . . . , bn). The assignment b together with this
assignment leads to a total weight of t and the output 1 while the assignment
a together with this assignment leads to a total weight of less then t and the
output 0.

Exercise 4.17. We choose the variable ordering
xn/2, xn/2+1, xn/2−1, xn/2+2, . . . , x1, xn. The weighted sum can be written as

∑

1≤i≤n

wixi = 2n/2
∑

n/2+1≤i≤n

xi +
∑

1≤i≤n/2

2i−1(xi − xn−i+1).

The value of the second term lies in the interval [−2n/2 + 1, 2n/2− 1]. Since the
first term is a multiple of 2n/2 and t is a multiple of 2n/2 (see the solution of
Exercise 4.16), it is sufficient to store the value of xn/2+1 + · · · + xn (n/2 + 1
possible values) and enough information to decide whether the second term will
be nonnegative. If we have tested xn−i+1, there are three possibilities:

- xn/2 = xn/2+1, . . . , xi = xn−i+1 (then the partial sum for the second
term equals 0),

- for some j we have xn/2 = xn/2+1, . . . , xj = xn−j+1, xj−1 = 1, xn−j+2 =
0 (then we know that the second term is positive),

- for some j we have xn/2 = xn/2+1, . . . , xj = xn−j+1, xj−1 = 0, xn−j+2 =
1 (then we know that the second term is negative).

Altogether, the size of the following level, the xi−1-level, is bounded above by
3(n/2 + 1) implying that the size of the next level, the xn−i+2-level, is bounded
by 6(n/2 + 1). Hence, the size of each level is bounded by O(n) and the total
size by O(n2).

Exercise 4.18. Let ej(z) = 1 iff |z| = j. This function can be represented as
a monomial. Moreover,

fn(x, y, z) =
∨

0≤j≤n−1

ej(z) ∧
∨

0≤i≤n−1

xiyi+j

=
∨

0≤i,j≤n−1

ej(z)xiyi+j

is a DNF representation with n2 monomials of length k + 2 each.

20

Let π be an arbitrary variable ordering. W.l.o.g. n is a multiple of 4. We
consider the level where for the first time n/2 x-variables or n/2 y-variables
have been tested. W.l.o.g. n/2 x-variables have been tested. These chosen x-
variables belong to n2/2 pairs xiyi+j . Since less than n/2 y-variables have been
tested, there are at most n2/4 of these pairs such that also the y-variable has
already been tested. Hence, there are at least n2/4 pairs (called bad pairs) such
that the x-variable is tested in the top part and the y-variable is tested in the
bottom part. There are n possible values for the shift |z|. By the pigeon-hole-
principle, there is one value leading to at least n/4 bad pairs. After renumbering
the y-variables we can assume that |z| = 0. We replace the z-variables by this
vector. This leads to the function x1y1 + · · · + xnyn. We replace all variables
not belonging to n/4 bad pairs by 0. After renumbering we get the function
x1y1 + · · ·+ xn/4yn/4 and all x-variables are tested before all y-variables. This

leads to the lower bound 2n/4 on the OBDD size. All different assignments to
the x-variables lead to different subfunctions.

Exercise 4.19. We apply Lemma 4.10.1. If k variables have been tested, at
most 2k nodes can be reached. This implies the size bound for the first n/2
levels of the OBDD. If k > n/2, the length of the window is bounded above by
n− k. Hence, each N(k, s) ≤ 2n−k and

∑

n/2<k≤n

∑

0≤s≤n−k

2n−k ≤ n ·
∑

n/2<k≤n

2n−k ≤ 2n2n/2

is an upper bound on the size of the last n/2 levels of the OBDD.

Exercise 4.20. We apply Lemma 4.10.1 for k = n/2 and s = n/4. The window
has length n + 1− k = n/2 + 1. All variables already tested are in the window.
Hence, w = n/2. This leads to the lower bound

N(n/2, n/4) =

(

n/2

n/4

)

.

It is well-known that
(

n
n/2

)

= Θ(n−1/22n) and, therefore,
(n/2
n/4

)

= Θ(n−1/22n/2).

Exercise 4.21. For a lower bound, we consider s0 +s1 + · · ·+sn where si is the
number of different subfunctions after the test of the variables of the ith row.
For the inputs which have not reached the 0-sink we have to distinguish the
(

n
i

)

different subsets of the set of columns which may already contain a 1. We
may take the sum of all si, since the subfunctions considered for si essentially
depend on xi+1,1 while the subfunctions considered for si+1 do not depend on
this variable. This leads to the lower bound

(

n
0

)

+
(

n
1

)

+ · · · +
(

n
n

)

= 2n. If we
have tested the variables of the ith row and some variables of the next row, we
have to distinguish at most

(

n
i

)

+
(

n
i+1

)

subfunctions (besides the constant 0).
Either we have seen i ones, one in each of the first i rows and the ones are
located in different columns or we have seen i + 1 ones, one in each of the first
i+1 rows and the ones are located in different columns. This leads to an upper
bound of n · ∑

0≤i≤n−1

((

n
i

)

+
(

n
i+1

))

= O(n2n).

21

Chapter 5

Exercise 5.1. The proof that the inner product function is almost ugly is
similar to the proof for the disjoint quadratic function in Theorem 5.3.3. The
variable ordering, x1, y1, . . . , xn, yn leads to linear size. Now we consider an
arbitrary variable ordering and a cut after n levels. For the pairs, we fix the
assignment (0, 0). If the number of singletons is s, we may assume w.l.o.g. that
we still have to compute x1y1⊕· · ·⊕xsys and that we first test x1, . . . , xs. Then
we obtain 2s different subfunctions, for each S ⊆ {1, . . . , s} the ⊕-sum of all yi,
i ∈ S. The probabilistic part of the proof is identical to the proof for DQF.

Exercise 5.2. We know from Theorem 4.4.4 that the OBDD size of multiple
addition is polynomial.

Now we investigate a random variable ordering and consider the choice of the
first n/2 variables. The probability that a chosen variable belongs to a column
such that no previously chosen variable belongs to this column is at least 1/2.
Hence, by Chernoff’s bound, with a probability exponentially close to 1 we have
among the first n/2 variables variables from at least n/5 different columns. This
leads to 2c different subfunctions if we have chosen variables from c different
columns. The reason is the following. We may fix the variables in columns
without chosen variables in such a way that these columns contain exactly one
1-entry. For the other columns we only investigate assignments with at most one
1-entry. Then we have reduced the problem to the addition of two c-bit binary
numbers where the bits of the first number are tested first. Hence, the OBDD
size, even for the output at position n, is with a probability exponentially close
to 1 at least 2n/5.

We remark that we can obtain a lower bound of 2n using a cut after Θ(n log n)
tested variables and applying the coupon collector’s theorem (Motwani and
Raghavan (1995)).

Exercise 5.3. The function ROW is almost ugly. It has linear OBDD size
for a rowwise variable ordering. The investigation of random variable orderings
follows the lines of the solution of Exercise 5.2 with the exception that we
consider rows instead of columns. Let r be the number of rows such that at
least one variable of the row is among the first n/2 variables. We consider the
2r assignments to the first n/2 variables where all variables of each row get the
same value. Let two assignments differ in the value of row i. Then we obtain
different subfunctions. We fix the remaining variables in such a way that exactly
the variables of row i get the value 1. Then we obtain different output values.
Hence, the OBDD size is with a probability exponentially close to 1 at least
2n/5.

Exercise 5.4. Yes, e.g., the functions x1y1 + · · ·+ xnyn and x1y1 ⊕ · · · ⊕ xnyn

are almost ugly and are defined by read-once formulas.

Exercise 5.7. The sensitivity of symmetric functions is equal to 1, since the
variable ordering has no influence on the OBDD size.

22

For each polynomial p we find a threshold function with polynomial weights
whose sensitivity is at least Ω(p(n)). As an example let p(n) = n. Let n = 3k.
Then we set w1 = · · · = wk = n2, wk+1 = · · · = w2k = n, w2k+1 = · · · = w3k =
1, and t = (n2+n+1)k/2. The OBDD size for the variable ordering x1, . . . , xn is
bounded above by O(n2). First, we count the number of ones among x1, . . . , xk.
If this number is less than k/2, we reach the 0-sink, and if the number is larger
than k/2, we reach the 1-sink. Only if the number is equal to k/2, we count
the number of ones among xk+1, . . . , x2k and, by the same arguments, reach
a sink if the number of ones is not equal to k/2. Only if also that number is
equal to k/2 we have to count the number of ones among x2k+1, . . . , x3k. The
three sub-OBDDs for counting have size O(n2). Now we investigate the variable
ordering x1, xk+1, x2k+1, x2, xk+2, x2k+2, . . . , xk, x2k, x3k. After the test of the
first k/2 triples of variables we have to distinguish all (k/2+1)3 different triples
of the number of ones in the blocks B1 = (x1, . . . , xk), B2 = (xk+1, . . . , x2k),
B3 = (x2k+1, . . . , x3k). Hence, the OBDD size equals Ω(n3). We may generalize
this to m groups of variables with the weights nm−1, . . . , n, 1 resp. for the
members of the different groups. The upper bound remains O(n2) and the lower
bound is Ω(nm) by the same arguments as above (as long as m is a constant).
This leads to a sensitivity of Ω(nm−2).

Before we consider functions f = (fn) where |f−1
n (1)| is polynomially bound-

ed, we investigate the multiplexer function and prove that its sensitivity is
Ω(2n/n). It has linear size if the address variables are tested first. Now consider
variable orderings where the data variables are tested first. Let us consider two
different assignments a and b where ai 6= bi. The corresponding subfunctions
are different, since we obtain different outputs if the address equals i. This leads
to the lower bound 2n. If we consider the multiplexer on approximately c log n
variables, the sensitivity equals Ω(nc/ log n). The same holds for the function
fn on n variables which is equal to the multiplexer on the last approximately
c log n variables if all other variables are equal to 1 and which outputs 0 other-
wise. This function outputs 1 for O(nc) inputs. Hence, the sensitivity can be
larger than any given polynomial.

For the fourth class of functions, we obtain the same type of result as for
the last two classes. Let Xi contain n/k variables, let hi be the exact counting
function checking whether exactly half of the variables of Xi are equal to 1, and
let g be the conjunction. Similarly to the consideration of the general threshold
function, we obtain an O(n2) bound for blockwise variable orderings and a lower
bound of Ω(nk) for variable orderings starting with k variables from different
blocks, followed by k variables from different blocks, and so on.

It is difficult to estimate the sensitivity of the most significant bit of the
squaring function. We need properties of c = (cn−1, . . . , c0) where |c| = d2n−1/2e.
We know that c consists of the first n bits of the binary representation of

√
2

which follow the binary point where we add 1 at the last position. Let i be
the smallest index where ci = 1. Then the function essentially depends on
xn−1, . . . , xi leading to a lower bound of Ω(n − i). Using the variable or-
dering xn−1, . . . , x0 the OBDD contains exactly one xj-node for j ≥ i. If
xn−1, . . . , xj+1 have been tested, we either have reached a sink or xn−1 =

23

cn−1, . . . , xj+1 = cj+1. Only in this situation we test xj . Hence, the optimal
OBDD size equals n− i + 2. We conjecture that n− i = Θ(n).

Let b = b(n) be the number of blocks B1, . . . , Bb of c where a block is a
largest constant subvector. Since 1 <

√
2 < 3/2, B1 is a 0-block if n is large

enough. Either Bb or Bb−1 is a 1-block. To simplify the notation we assume
that Bb is a 1-block.

We claim an upper bound of O(nb) independently of the variable ordering.
The crucial idea is that it is sufficient to store the crucial index namely the index
of the first block where some bit of the input differs from the corresponding c-bit
(this index is b+1 if no bit of the tested variables differs from the corresponding
c-bit). Hence, the OBDD width is bounded above by b + 1.

Now we design a bad variable ordering. We only consider the test of the
variables in the 1-blocks B2, B4, . . . , Bb−2, Bb. If the crucial index equals i, the
subfunction essentially depends exactly on all variables from B1, . . . , Bi−1 not
yet tested. The reason is that we have to decide whether the crucial index i∗ of
the whole input is even or odd. We already know that i∗ ≤ i and each variable
of B1, . . . , Bi−1 not yet tested can be the only one to change the situation. We
start with the test of one variable of each block Bb, Bb−2, . . . , B4, B2. By the
above considerations, these levels have size 1+ · · ·+b/2 = Θ(b2). We conjecture
that b = Θ(n).

We do not try to prove the two number theoretical conjectures. If both are
true, the sensitivity of the most significant bit of the squaring function equals
Θ(n).

Exercise 5.8. We guess a sequence of s BDD nodes and an ordering π of the
variables tested in the OBDD representing f . Then we check whether the BDD
nodes with node 1 as source lead to a π-OBDD. In the negative case we reject.
Otherwise, we have given the OBDD Gf representing f and the π-OBDD. Let g
be the function represented by this π-OBDD called Gg. We compute a variable
ordering π′ such that Gf is a π′-OBDD. The OBDD defines a partial ordering
on the set of variables. If an edge leads from an xi-node to an xj-node, xi ≤ xj .
Hence, we may apply well-known techniques for topological sorting. Afterwards,
we can apply the equivalence check for OBDDs with different variable orderings
(Corollary 5.7.11).

Exercise 5.9. We design a Turing reduction from the classical SAT problem to
the considered problem. Let c1, . . . , cm be a set of clauses defined on x1, . . . , xn.
Then we compute a circuit C realizing f = c1 ∧ · · · ∧ cm ∧ (y1y2 + y3y4). Let
π be the variable ordering y1, y3, y2, y4, x1, . . . , xn. If c1 ∧ c2 ∧ · · · ∧ cm is not
satisfiable, f ≡ 0 and π is like each other variable ordering optimal. Otherwise,
the π-OBDD starts with an OBDD for y1y2 + y3y4 and the 1-sink is replaced
by an id-OBDD for c1 ∧ · · · ∧ cm. The variable ordering π is not optimal, since
we may save one node by using the variable ordering y1, y2, y3, y4, x1, . . . , xn.
Hence, we can decide the satisfiability of c1 ∧ · · · ∧ cm by checking whether π is
an optimal variable ordering for the function realized by C.

24

Exercise 5.12. For each choice of I ⊆ {1, . . . , n} we like to compute MIN(I),
the minimal number of xi-nodes, i ∈ I, of an OBDD representing f and using
a variable ordering which starts with all xi, i ∈ I, and we like to compute π(I),
an optimal ordering of these variables. We are interested in π({1, . . . , n}). Let
everything be done for sets I where |I| = k. Now we consider a set I where
|I| = k + 1. For each i ∈ I we compute the number of subfunctions of f which
can be obtained by replacing the variables xj , j ∈ I − {i}, by constants and
which essentially depend on xi. We work with the function table of size 2n.
We copy that table in such a way that we obtain 2k subtables of size 2n−k

which describe the subfunctions we are interested in. Each table can be checked
in linear time whether the subfunction essentially depends on xi. In order to
determine the number of different subfunctions essentially depending on xi, we
sort the function tables for the subfunctions essentially depending on xi. The
sorting can be performed with O(k2k) comparisons of vectors of length 2n−k.
Hence, O(k2n) operations are enough. Let s(i, I) be the resulting number. Then

MIN(I) = min{MIN(I − {i}) + s(i, I) | i ∈ I}.

If i leads to the minimal value, π(I) is the concatenation of π(I − {i}) and xi.
We store the function table and one copy (size 2n) and for some k for all

(

n
k

)

sets
I where |I| = k the numbers MIN(I) and the partial orderings π(I) of length
k. Hence, the storage space is bounded by max{k

(

n
k

)

+ 2n | 1 ≤ k ≤ n} =

O(n1/22n). For the analysis of the run time we consider
(

n
k

)

sets of size k, for
each set k indices i and for each i we have a run time of O(k2n). Hence, the
run time is of order

∑

1≤k≤n

k2

(

n

k

)

2n ≤ n24n.

Exercise 5.13. We have to prove that each for the four criteria is sufficient to
prove the asymmetry of f with respect to xi and xj .

1. If f is symmetric with respect to xi and xj , where w.l.o.g. i < j,
f(a1, . . . , ai−1, a

∗, ai+1, . . . , aj−1, 1, aj+1, . . . , an) =
f(a1, . . . , ai−1, 1, ai+1, . . . , aj−1, a

∗, aj+1, . . . , an) implying that
|f−1
|xi=1(1)| = |f−1

|xj=1(1)|.

2. The node v of a reduced OBDD represents a subfunction of f essentially
depending on xi, since it is labeled by xi. This subfunction f∗ does not
essentially depend on xj , since it is represented by an OBDD without xj-
node. Hence, f∗|xi=0,xj=1 = f∗|xi=0 6= f∗|xi=1 = f∗|xi=1,xj=0 implying that

f|xi=0,xj=1 6= f|xi=1,xj=0.

3. Let f∗ be the subfunction obtained by replacing the variables on the path
from the source to the considered xi-node by the corresponding constants
which activate this path. Then f∗ essentially depends on xi but not on
xj and the same arguments as for Criterion 2 can be applied.

25

4. Let v∗ ∈ V01−V10 (the other case can be handled similarly). Let a be the
partial assignment defined by a path from the source to v∗ via the 0-edge
leaving v and a 1-edge leaving an xj-node. Let f∗ be the corresponding
subfunction and let f∗∗ be the subfunction for the partial assignment b
which fixes the same variables as a and differs in the assignments to xi

and xj . If f is symmetric with respect to xi and xj , we can conclude that
f∗ = f∗∗ and both functions are represented in a reduced OBDD by the
same node. Hence, f∗∗ is represented at v∗ and v∗ ∈ V10 in contradiction
to the assumption.

Exercise 5.14. The function sn|xi=1 syntactically depends on xi. This function
takes the value 1 if there is some j > i such that xj = yj = 1 and xk ⊕ yk = 1
for k > j or yi = 1 and xk ⊕ yk = 1 for k > i or there is some j < i such that
xj = yj = 1, yi = 0, and xk ⊕ yk for k > j such that k 6= i. Hence,

|s−1
n|xi=1(1)| =

∑

i+1≤j≤n−1

2n−j−1 · 4j + 2n−i−1 · 2 · 4i +
∑

0≤j≤n−1

2n−j−1 · 4j

=
∑

0≤j≤n−1

2n−j−1 · 4j + 2n−i−1 · 4i

=
∑

0≤j≤n−1

2n−j−1 · 4j + 2n−1 · 2i

which obviously is strictly increasing with i.

Exercise 5.15. The number is equal to 23·2n−2

. For all (a1, a2, a3, . . . , an)
where (a1, a2) ∈ {(0, 0), (0, 1), (1, 1)} we may choose arbitrary function values
but f(1, 0, a3, . . . , an) has to be equal to f(0, 1, a3, . . . , an).

Exercise 5.16. Sometimes we refer to the criteria of Theorem 5.5.4.

1. DSAn is not symmetric with respect to any pair of variables. For two
data variables we apply Criterion 2 for the usual optimal variable ordering.
For one address variable and one data variable we apply Criterion 2 and
a variable ordering starting with all address variables but not with the
considered address variable. For two address variables, we consider a data
vector with a single 1-entry at a position such that the two considered
address variables take different values. If we switch these address bits, the
output switches from 1 to 0.

2. HWBn is not symmetric with respect to any pair of variables xi and xj .
W.l.o.g. i < n. We can construct an input a with ai = 0 and aj = 1 and
altogether i ones leading to the output 0. If we switch the values of xi

and xj , the output equals 1.

3. The maximal sets of symmetric variables of ADDn are {xi, yi}, 0 ≤ i ≤
n−1. It is obvious that ADDn is symmetric with respect to xi and yi. For
all other pairs we can apply Criterion 1 and the solution of Exercise 5.14.

26

4. MULn, n ≥ 2, is not symmetric with respect to any pair of variables. For
xi and xj , we set yn−1 = · · · = y1 = 0 and y0 = 1 and consider the output
pj which is equal to xj . Similar arguments work for yi and yj . For xi and
yi we fix all other variables where only y0 (if j 6= 0) gets the value 1. The
output pj is equal to xj . If j = 0, we only set y1 to 1 and consider pj+1.
If n = 1, we obtain the symmetric function x0y0.

5. The maximal sets of symmetric variables for ROWn are the sets containing
the variables of one row. Nothing changes if we switch the values of two
entries of the same row. If two variables belong to different rows, w.l.o.g.
row 1 and row 2, we can fix all other variables in such a way that only the
variables of row 1 get the value 1. The resulting subfunction is equal to
the chosen variable of row 1.

6. ROWn + COLn, n ≥ 3, is not symmetric with respect to any pair of
variables. We consider two different variables. They do not belong to the
same row or not to the same column. In the first case, we use the same
arguments as in the proof for ROWn and in the second case we argue
with respect to the columns. In the first case, it is not possible to obtain
a column of 1-entries, since for n ≥ 3 we have replaced at least one row
by 0-entries. If n = 2, the function is symmetric with respect to x11 and
x22 and with respect to x12 and x21.

7. DQFn is symmetric with respect to the sets {xi, yi}. Obviously, we can
interchange xi and yi. Now we consider one variable zi of the ith pair
and the variable zj of the jth pair. If we replace all variables besides the
partner of zi by 0 and the partner of zi by 1, we obtain the subfunction
zi.

Exercise 5.17. Let a = (a0, . . . , ak−1), x = (x0, . . . , xn−1), and y = (y1, . . . ,
yn) where n = 2k. Let fn(a, x, y) = MUXn(a, x)⊕MAJn(y). Let π1 = (a, x, y).
The π1-OBDD for fn starts with an OBDD for MUXn with 2n− 1 inner nodes.
Afterwards, we have to represent MAJn and MAJn. Since MAJn is monotone,
these sub-OBDDs can only share the sinks (see the solution of Exercise 3.4).
The OBDD size of MAJn equals 1

4n2 + 1
2n (see Theorem 4.7.2.i). Hence, the π1-

OBDD size of fn equals 1
2n2+3n+1. The function fn is symmetric with respect

to the y-variables. Group sifting leads to π2 = (a, y, x). Then we start with
a complete tree on the a-variables. This tree has n − 1 inner nodes. We have
to ”store” the value of |a| and need n disjoint copies of an OBDD for MAJn,
altogether 1

4n3 + 1
2n2 inner nodes. Finally, we need 2xi-nodes representing xi

and xi and 2 sinks. Hence, the π2-OBDD size of fn equals 1
4n3 + 1

2n2 + 3n + 1.
A typical sifting process will be aborted. Let π3 = (y, a, x). Then we start
with an OBDD for MAJn with 1

4n2 + 1
2n inner nodes. Afterwards, 4n nodes are

sufficient to represent MUXn and MUXn simultaneously. Hence, the π3-OBDD
size of fn equals 1

4n2 + 9
2n and π3 is better than π1.

Exercise 5.19. Let x1, . . . , xm, m ≤ n, be the variables which each label one
leaf of the formula and let y1, . . . , yk, k = O(log n), be the other variables. We

27

construct a read-once formula Gn on the x-variables. For each gate v where
one subtree contains only y-leaves we eliminate the y-subtree and the gate.
The output of the other subtree is directly connected with the successor of the
eliminated gate. Theorem 4.11.2 ensures the existence of a variable ordering
π of the x-variables (which indeed can be computed efficiently) such that the
π-OBDD size of the function gn represented by Gn is polynomially bounded
with respect to m ≤ n. We use a variable ordering starting with the y-variables
in an arbitrary ordering followed by the x-variables ordered according to π. An
OBDD for the given formula Fn may start with a complete binary on the y-
variables. This tree has polynomially many leaves. It is sufficient to prove that
each subfunction for an assignment to the y-variables has polynomial π-OBDD
size. The x-leaves of Fn are the same as in Gn. Let us consider the influence of
the y-variables in Gn and Fn. Let v be a gate as considered in the beginning of
the proof. First we investigate Gn. If the second subformula represents h, the
function h is also input of the successor of v. If the second subformula represents
h∗ as subformula of Fn, the gate v represents one on the functions 0,1,h∗ and
h
∗
, since the y-variables are replaced by constants. The proof of Theorem 2.1.4

shows that it makes no difference whether we have to represent h∗ or h
∗
. If

instead of this we only have to represent a constant, this makes the resulting
OBDD only smaller. Altogether, each subfunction obtained by replacing the
y-variables by constants has a π-OBDD size which is not larger than the OBDD
size of gn and we have constructed a π-OBDD of polynomial size.

Exercise 5.20. We consider Figure 5.7.1. The first two cases do not change if
edges can be complemented. Here we illustrate the new cases with the compl-
bits.

28

u1 u00 u01 u1

u0 u10 u0 u10 u11

u00 u01 u10 u11

u11

u01u00

u01u00 u10 u11

c2 ⊕ c4

c4 ⊕ c5 ⊕ c6

c5

v1v0

uu0u

u0

v1v0u1

u u u1

u0 u1

u

c3

c3

c3 c1 c3

c2 ⊕ c4

c1

c3

c1

c1

c1

c2

c3

c1 c2

c4

c4

c2

c4 c2

c4

c2c2

c4

c5

c2

0

c6 c4

c6

c5

u0 u u1

v1v0

Exercise 5.21. The solution of Exercise 5.20 shows that we obtain the same
results for the swap operation on OBDDs with complemented edges as described
in Theorem 5.7.2 for OBDDs without complemented edges. The first bound of
Theorem 5.7.4 for jump-up and the second bound of Theorem 5.7.5 for jump-
down are based on the investigation of a sequence of swap operations. These
results also hold for OBDDs with complemented edges. It is easy to transfer
the second bound of Theorem 5.7.4. We use the same notation but now for
OBDDs with complemented edges. An xk-node, j ≤ k ≤ i − 1, can represent
g = f|x1=a1,...,xk−1=ak−1

and its negation g. We obtain at most four subfunctions
g|xk=0, g|xk=1,g|xk=0, g|xk=1 which can be represented by at most two nodes.
The result on s∗i holds, since it is based on graph-theoretical arguments. Now
we investigate the first bound of Theorem 5.7.5. Before the jump-operation we

29

represent all functions f|x1=a1,...,xk−1=ak−1
essentially depending on xk where

a function and its negation can be represented at the same node. Let g be a
subfunction of f where the variables x1, . . . , xi−1, xi+1, . . . , xk−1 are replaced by
constants. By Shannon’s decomposition rule, g = xig|xi=1 +xig|xi=0 and g|xi=1

and g|xi=0 are represented in the given OBDD on one of the levels xk, . . . , xn

or the sink level. At least one of the subfunctions has to essentially depend on
xk. If we replace in xig|xi=1 + xig|xi=0 the function g|xi=1 with g|xi=1, we do
not obtain g. Hence, we only obtain the bound

s1 + · · ·+ si − 1 + (2si+1 + · · ·+ 2sn + 2)2

which follows by eliminating the complemented edges on the last levels before
applying the old arguments.

Exercise 5.22. Let us consider the multiplexer with the following variable
orderings:

– y0, . . . , yn−1, x0, . . . , xk−1 (π1)

– yn−1, y0, . . . , yn−2, x0, . . . , xk−1 (π2)

– y0, . . . , yn−2, x0, . . . , xk−1, yn−1 (π3)

It is easy to see that π1 is the result of jump-down (1, n) applied to π2 and
π1 also is the result of jump-up (n + k, n) applied to π3. The yn−1-level of a
π2-OBDD or π3-OBDD has size 1, while the yn−1-level of a π1-OBDD has size
2n−1. The last bound follows, since the OBDD starts with a complete binary
tree as long as only data variables are tested (see the solution of Exercise 5.7).

Exercise 5.23. The functions ROWn and COLn are defined on N = n2 vari-
ables. Their OBDD size is O(N) (see Theorem 4.12.1) for a rowwise resp.
columnwise variable ordering. The OBDD size of ROWn + COLn grows expo-
nentially (see Theorem 4.12.2 and Theorem 6.2.13).

Exercise 5.24. The solution of Exercise 4.5 shows that 3n±O(1) OBDD
nodes are sufficient for the representation according to the variable ordering
x0, y0, . . . , xn−1, yn−1. On the xj-level we distinguish whether cj−1 = 0 or
cj−1 = 1. On the yj-level we have a node for the situation that xj⊕cj−1 = 1. If
we now test yn−1 at the top, the number on these levels gets doubled (with the
exception of the xn−1-level), since the four different values for (yn−1, cj−1) lead
to different subfunctions essentially depending on xj and, if xj ⊕ cj−1 = 1, the
different values for yn−1 lead to different subfunctions essentially depending on
yj . Hence, the size for the variable ordering yn−1, x0, y0, . . . , xn−2, yn−2, xn−1

equals 6n±O(1). This proves the optimality of the second bound of Theo-
rem 5.7.4.

Exercise 5.25. Let the given variable ordering be . . . , y1, . . . , ym, z1, . . . ,
zk, . . . where the y-variables as well as the z-variables are sets of symmetric

30

variables. The pointers to one of the y-levels (z-levels) from the upper part
always point to the y1-level (z1-level). We replace the y1-nodes by nodes for a
new variable y which may take any value in {0, . . . , m} and have m+1 outgoing
edges labeled by 0, . . . , m resp. The edge with label i leads to the node which
is reached by inputs where y1 + · · ·+ ym = i (this node is uniquely determined
for reduced OBDDs). The same is done for the z1-nodes. Now we generalize
the swap operation described in Figure 5.7.1. Nodes on the z-level reached also
from nodes above the y-level only lose their pointers from the y-level. Nodes on
the y-level not reaching nodes on the z-level do not have to be changed. Nodes
on the z-level only reached from nodes on the y-level will be eliminated. We
consider a y-node with at least one outgoing edge leading to a z-node. This
y-node is relabeled by z with now k + 1 outgoing edges reaching new y-nodes
with new outgoing edges. The path for z = i and y = j reaches the same node
as the path for y = j and z = i before. Finally the y-nodes and z-nodes are
replaced by sub-OBDDs. As in the binary case, it is possible that reduction
rules can be applied.

Exercise 5.26. We investigate the OBDD size for the three variable orderings.

1. x1, . . . , xn, y. We have to decide whether ||x||n := x1 + · · · + xn is equal
to k (this leads to the 1-sink), ||x||n = 2k + 1 (this leads to a y-node),
or ||x||n 6∈ {k, 2k + 1} (this leads to the 0-sink). Obviously, we only have
to distinguish different partial sums. Before having tested xn, we only
may save nodes if we can replace them by 0-sinks. Hence, we start with i
xi-nodes, altogether 1 + · · ·+ n = 1

2n2 + 1
2n nodes. We cannot save nodes

on the levels x1, . . . , x2k+2. Even if x1 = · · · = x2k+1 = 0, we may have
k ones in the input. If ||x||2k+2 = 0, ||x||n < k. If ||x||2k+2 = 2k + 2,
also ||x||n > 2k + 1. If ||x||2k+2 = k + 1, k < ||x||n < 2k + 1. We save
3 nodes. The number of nodes which are saved increases on each level
by 3. We have two intervals of partial sums which are represented by
nodes namely k − i, . . . , k, and 2k + 1 − i, . . . , 2k + 1 if there are still i
x-variables which have to be tested. The next level has one more node
(before the replacement by 0-sinks) but two partial sums less that have to
be represented namely k − i and 2k + 1− i. Hence, the number of nodes
replaced by 0-sinks equals

3(1 + · · ·+ (k − 1)) =
3

2
k(k − 1) =

3

2
· n− 1

3
· n− 4

3
=

1

6
n2 − 5

6
n +

4

6
.

We have to add 3 for the y-node and the two sinks. Altogether, the number
of nodes equals

1

2
n2 +

1

2
n− (

1

6
n2 − 5

6
n +

4

6
) + 3 =

1

3
n2 +

4

3
n +

7

3
.

2. y, x1, . . . , xn We start with one y-node whose edges point to an SBDD on
the x-variables where we have to represent f0 checking whether ||xn|| = k
at the 0-successor and f1 checking whether ||x||n ∈ {k, 2k + 1} at the

31

1-successor. After k tests it is still possible to have k or 2k +1 ones in the
input. The first k + 1 levels contain 2(1 + · · ·+ (k + 1)) = (k + 1)(k + 2)
nodes, since the OBDDs for the subfunctions with respect to y cannot
share nodes. On level k + 2, we have the partial sums 0, . . . , k + 1. The
last sum can be replaced for f0 by the 0-sink, since the number of ones is
already too large. The partial sum 0 for f1 can be merged with the partial
sum 0 for f0, since the value 2k+1 is no longer reachable. Moreover, we can
merge the partial sum k + 1 for f1 with the partial sum 0 for f0, since we
are only looking for k further ones. On each of the levels k +2, . . . , 2k +1
we have the k + 1 nodes for the sub-OBDD for f0. They check whether
the number of ones in the remaining input is equal to 0, . . . , k. For f1 we
only need additional nodes for those partial sums such that ||x||n = k and
||x||n = 2k+1 are still possible. These are at first the partial sums 1, . . . , k
and at the end the partial sum k. The number of nodes on these levels
equals k(k + 1) + k + · · ·+ 1 = 3

2 (k2 + k). On the levels 2k + 2, . . . , 3k + 1
we have (k + 1) + · · ·+ 2 = 1

2k2 + 3
2k nodes, since all nodes for f1 can be

merged with nodes for f0. Additionally, we have to count the sinks. This
leads to the following number of nodes:

1 + (k2 + 3k + 2) + (
3

2
k2 +

3

2
k) + (

1

2
k2 +

3

2
k) + 2 =

3k2 + 6k + 5 = 3(
n− 1

3
)2 + 6

n− 1

3
+ 5 =

1

3
n2 +

4

3
n +

10

3
.

3. x1, . . . , xn/2, y, xn/2+1, . . . , xn. The first n/2 levels have the same size as

for the first variable ordering namely 1+ · · ·+n/2 = 1
8n2+ 1

4n. Only if it is
still possible that ||x||n = 2k+1 we have to test y. If the partial sum equals
s, the largest possible value is s + n/2 and s + n/2 = 2k + 1 = 2 n−1

3 + 1
iff s = 2

3n + 1
3 − 1

2n = 1
6n + 1

3 . Hence, we have n
2 − (1

6n + 1
3) + 1 = 1

3n + 2
3

y-nodes. Afterwards, the number of nodes is equal to the case of the
second variable ordering namely 2 + · · · + (n

2 + 1) = 1
8n2 + 3

4n. We have
to add the number of the sinks. The resulting OBDD size equals

1

8
n2 +

1

4
n +

1

3
n +

2

3
+

1

8
n2 +

3

4
n + 2 =

1

4
n2 +

4

3
n +

8

3
.

.

Exercise 5.28. This exercise can be solved by a generalization of Figure 5.9.1.

32

yi = xi ⊕ xi+1

xi+1

xi+1

xi

xi → xi ⊕ xi+1

yi = xi ⊕ xi+1

xi+1

xi+1

xi

xi → xi ⊕ xi+1

u0 u1

c6

c3 ⊕ c4

c6

c2

c4 ⊕ c5

c2

c3

u1u0

u

u1

u

v1 u1v0

u u

u1v1v0u0

c5
c4 ⊕ c6

u0

u

u0

c4

u1 u0 u1 u00 u01 u1

u0 u1 u00 u01 u1

c1 c1 c2c1

c1 c1 c1 c2

c2

c3

c4

c4c2

c4

c3

u

u

v1v0 u

u

v0 v1

u10

c1

u

u0

u0 u10 u11 u00 u01 u10 u11

u0 u10 u11 u00 u01

c2

u11

c3c2

c2 c1 c3

c2c1 c1

c3

c4

c4

c5

c3

c4
c3 ⊕ c4

33

Chapter 6

Exercise 6.1. We consider an arbitrary path starting at the source and stop-
ping at some inner node. Then there exist some i ≥ 0 and j ≥ 0 such that the
variables x1, . . . , xi and xn−j , . . . , xn have been tested. If there are only two
variables left, i.e., n − j − i = 3, we have reached a sink, since the last two
levels are eliminated by the reduction rules. Otherwise, the 0-edge leads to an
xn−j−i-node and the 1-edge leads to an xi+1-node. We always start with a test
of xn. Hence, the number of different variable orderings equals 2n−3.

Exercise 6.2. Let Gn be a graph ordering on n variables describing at most
p(n) (polynomially many) different variable orderings. We describe Gn by a
tree-like structure. More precisely, each node except the sink is reached only by
edges from one node. A node v is called branching node if v has two different
direct successors. Such a representation is possible with at most p(n) branching
nodes. We follow the path from the source to the sink which always chooses the
successor which has the smaller number of successors which are branching nodes
(ties can be broken arbitrarily). This path has at most dlog p(n)e branching
nodes. Hence, there is an assignment a to at most dlog p(n)e variables such that
the graph ordering Gn checks all extensions of this partial assignment according
to the same variable ordering.

Let us start with a Gn-FBDD representing HWBn and let us replace vari-
ables according to the partial assignment a. Then we obtain an OBDD rep-
resenting the corresponding subfunction HWB′

n. It is sufficient to prove an
exponential lower bound on the OBDD size of HWB′

n. There are at least n −
3dlog p(n)e free variables among the variables xi, dlog p(n)e ≤ i ≤ n−dlog p(n)e.
Hence, there is an interval xi, . . . , xi+l of l = Ω(n/ log n) free variables. We ex-
tend the partial assignment a by replacing all variables except xi+1, . . . , xi+l

by constants. Let xi = 0 and let the total number of variables replaced by 1
be equal to i. The resulting function is the hidden weighted bit function on
Ω(n/ log n) variables and its OBDD size is bounded below by 2Ω(n/ log n) (see
Theorem 4.10.2).

Exercise 6.3. If f is not k-mixed, two different replacements of the same k
variables lead to the same subfunction. After renumbering we obtain

f|x1=a1,...,xk=ak
= f|x1=b1,...,xk=bk

and f(a1, . . . , ak, ck+1, . . . , cn) = f(b1, . . . , bk, ck+1, . . . , cn) for all
ck+1, . . . , cn ∈ {0, 1} and a1 6= b1. Let V = {x1, . . . , xk} and i = 1. If f is
k-stable, there are constants dk+1, . . . , dn such that f|xk+1=dk+1,...,xn=dn

is one
of the functions x1 or x1. Since a1 6= b1,

f|xk+1=dk+1,...,xn=dn
(a1, . . . , ak, 0, . . . , 0) 6= f|xk+1=dk+1,...,xn=dn

(b1, . . . , bk, 0, . . . , 0)

or
f(a1, . . . , ak, dk+1, . . . , dn) 6= f(b1, . . . , bk, dk+1, . . . , dn)

34

in contradiction to the conclusions implied by the assumption that f is not
k-mixed.

Exercise 6.4. W.l.o.g. n is even. We prove that DETn is n/2-stable and,
therefore, n/2-mixed (Exercise 6.3). This leads by Lemma 6.2.4 to a lower
bound of 2n/2 − 1. Let V be a set of at most n/2 variables and x∗ ∈ V . We
may interchange the rows and columns such that xij ∈ V implies 1 ≤ i, j ≤ n/2
and x∗ = x11. We choose the following assignment to the variables outside
V . Let x2,n/2+1 = x3,n/2+2 = · · · = xn/2,n−1 = xn/2+1,2 = xn/2+2,3 = · · · =
xn−1,n/2 = xn,n = 1. All other variables are set to 0. We claim that the
resulting subfunction is equal to x11. In order that x1,π(1)x2,π(2) · · ·xn,π(n) = 1,
it is necessary to choose π(n/2 + 1) = 2, . . . , π(n − 1) = n/2, π(n) = n, since
these are the only ones in these rows. Moreover, we have to choose π(2) =
n/2 + 1, . . . , π(n/2) = n − 1, since these are the only ones in these columns.
Hence, only one of the n! permutations π can lead to a 1 and this depends only
on the value of x11. It is even possible to prove that DETn is (n− 1)-stable.

Exercise 6.5. The function UHCn is defined on the variables xij , 1 ≤ i <
j ≤ n, and decides whether the undirected graph G(x) defined by x contains a
Hamiltonian circuit. We claim that UHCn is bn/4c-stable.

W.l.o.g. n is odd. Let V be a set of bn/4c variables and let w.l.o.g. x1,n ∈ V
be the considered special variable. We assign constants to the variables outside
V such that the resulting subfunction equals x1,n. Since |V | = bn/4c, there are
at least bn/2c vertices (called fixed vertices) such that we have to replace all vari-
ables describing edges adjacent to these vertices by constants. The vertices 1 and
n are not fixed. After renumbering we may assume that the vertices 2, 4, . . . , n−1
(n is odd) are fixed. We replace the variables x1,2, x2,3, x3,4, x4,5, . . . , xn−2,n−1,
xn−1,n by ones and all other variables outside V by zeros. The degree of each
vertex 2i is known to be 2. Hence, a Hamiltonian circuit has to contain the edges
(2i−1, 2i) and (2i, 2i+1) implying that (1, 2, . . . , n−1, n, 1) is the only possible
Hamiltonian circuit. Hence, the resulting subfunction outputs 1 iff x1,n = 1.

Exercise 6.6. We describe the subfunctions represented in FBDDs or OBDDs
representing f . First, we consider a π-OBDD. Let fij be the subfunction
obtained from f by replacing i of the first i+ j variables by zeros and j of these
variables by ones. The reduced π-OBDD for π = id contains besides the sinks
nodes for the non-constant subfunctions fij , 0 ≤ i + j ≤ n − 1. Let G be an
FBDD representing f . We follow the path starting at the source choosing at
first i 0-edges and then j 1-edges. We reach a node representing fij on some
subset of n− i−j variables. Hence, each FBDD contains at least as many nodes
as a reduced OBDD.

Exercise 6.7. The number of cliques of the considered special kind is O(n3).

There are n choices for i and afterwards
(

n−k(n)+2
2

)

possibilities to choose the
two further nodes (some special cliques are counted more than once). For each
special clique we choose the monomial consisting of those positive literals de-
scribing the edges of the clique. The function fk(n),n is the disjunction of these
O(n3) monomials.

35

Exercise 6.8. Let m(n) =
(bn1/3c

2

)

−1. Similarly to the proof of Theorem 6.2.7
we prove that fk(n),n is m(n)-stable. Let V be a set of at most m(n) variables
and let xij ∈ V . Let A be the set of vertices z 6∈ {i, j} such that some variable
of V describes an edge adjacent to z. Then |A| ≤ 2m(n) − 2. Thus B :=
{1, . . . , n}−A contains at least n− 2m(n)+2 vertices. The set B consists of at
most n2/3 successive subsequences mod n. The length of the longest subsequence
is at least (n− 2m(n) + 2)/n2/3 ≥ n1/3 − 1. Hence, we can choose some r such
that r, r + 1, . . . , r + k(n) − 3 mod n ∈ B. We choose a set D of k(n) vertices
from B among them i, j, and r, r + 1, . . . , r + (k(n) − 3)(mod n). We replace
the variables outside V in the following way by constants. Exactly the variables
describing edges between vertices of D are replaced by ones. We claim that the
resulting subfunction equals xij . If xij = 1, we obtain the special clique on D.
Let xij = 0. The graph does not contain the clique on D. All nodes in B −D
are isolated. Hence, a k(n)-clique has to contain a vertex v from A. Since the
number of edges on A is bounded above by m(n) (only the edges described by
the variables in V can exist), a k(n)-clique also has to contain a vertex w from
B. But the edge between v and w does not exist. Hence, xij = 0 implies that
the graph does not contain a k(n)-clique.

Exercise 6.9. We apply Corollary 6.2.8. W.l.o.g n is even. We prove that
cln/2,k(n/2) is a read-once projection of cln,n/2. We choose k(n/2) nodes among
the nodes n/2 + 1, . . . , n and replace all variables describing edges adjacent
to these nodes by zeros. These nodes are isolated. We replace all variables
describing edges between a node i ≤ n/2 and a remaining node j > n/2 by
ones. Hence, a k(n)-clique on 1, . . . , n/2 can be extended to an n/2-clique on
1, . . . , n and each n/2-clique on 1, . . . , n contains a k(n)-clique on 1, . . . , n/2.

Exercise 6.10. The solution of this exercise is presented before Theorem 7.2.6.

Exercise 6.11. We define a general threshold function T ∗∗
n which is based

on the general threshold function T ∗
n from Definition 4.8.2. Let n = k2 for an

even k. Let m := dlog ke + 1. Then let wij := 2(i−1)m + 2(k+j−1)m and let the
threshold value t be half the sum of all wij . Now we may consider the weight
as 2km-bit numbers with 2k special positions where the weights may have a
1-entry. Only k weights have a 1-entry at a fixed special position. Hence, there
can be no carry from one special position to another special position. We may
use the proof of Theorem 4.8.3 with some obvious changes to obtain in the same
way a 2

√
n/2 lower bound on the OBDD size of T ∗∗

n . We claim that at most
2k/2−t, t := d(k/2)1/2e, different partial assignments to some set of k/2 variables
lead to the same subfunction.

First, we argue how this claim implies an exponential bound on the FBDD
size of T ∗∗

n . We consider the 2k/2 paths of length k/2 starting at the source of
a complete FBDD representing T ∗∗

n . Only paths where the same variables are
tested can lead to the same node, since the FBDD is complete. Hence, the claim
proves a lower bound of 2t on the size of the complete FBDD. This implies a

lower bound of 2t/n = 2Ω(n1/4) on the size of arbitrary FBDDs representing
T ∗∗

n .

36

Finally, we prove the claim. Let a set of k/2 variables be fixed. The variables
xij are considered as members of a k× k-matrix. Let s be the maximal number
of rows or columns containing at least one of the chosen variables. Then s ≥ t.
W.l.o.g. we have s rows containing chosen variables. We investigate how many
partial assignments lead to the same partial sum. It follows from the proof
of Theorem 4.8.3, more precisely its variant for T ∗∗

n , that partial assignments
leading to different partial sums also lead to different subfunctions. Let the
ith row be one of the rows containing at least one of the chosen variables. At
most half of the partial assignments lead to the same partial sum at the specific
position belonging to row i. Since the assignment of constants to the variables
of different rows is independent of each other and since the carries are stopped
before the next specific position, at most 2k/2−s ≤ 2k/2−t partial assignments
lead to the same partial sum.

A proof of an exponential lower bound for T ∗
n is technically much more

involved. The case that we can consider s rows is not too difficult. Since the
assignments to the variables of different rows are independent, it is possible
to show that at most 2n/2−s partial assignments lead to the same bits at the
specific positions. If we have to consider s columns, we may have a carry from
the rightmost half of the binary representation of the weights. This carry is
not independent from the partial sums at the specific positions for the columns
belonging to chosen variables. We omit the details.

Exercise 6.12. This proof follows the general lower bound technique dis-
cussed at the beginning of Section 6.2. The crucial idea is the construction of
a suitable prefix free set of paths. Then the proof follows standard techniques.
Nevertheless, it is technically involved. A detailed proof is published in the pa-
per ”Complexity Theoretical Results on Partitioned (Nondeterministic) Binary
Decision Diagrams” (B.Bollig and I.Wegener), Theory of Computing Systems
32, 487-503, 1999 as proof of Theorem 12 (pages 497-499).

Exercise 6.13. The function f∗∗n is the ⊕-sum of all xiyj such that xiyj is
a prime implicant of f∗n. This representation is the unique ring-sum-expansion
(RSE) of f∗∗n . If a variable, w.l.o.g xi, is replaced by 0, this eliminates all terms
of the RSE containing xi. If xi is replaced by 1, a term xiyj is replaced by yj

and a term xi is replaced by 1. Afterwards, we have to eliminate terms which
occur twice (in general for an even number).

It follows from these considerations that each subfunction obtained by the
assignment of constants to at most n1/2 − 1 variables essentially depends on all

variables not replaced by constants. We consider the 2n1/2−1 paths of length
n1/2 − 1 starting at the source and claim that they lead to different subfunc-
tions. We only have to consider partial assignments of the same set of variables,
since otherwise the resulting subfunctions essentially depend on different sets of
variables. Let us consider two partial assignments, where w.l.o.g. xi = 0 for one
assignment and xi = 1 for the other one. The variable xi has n1/2 partners yj .
Each variable xk, k 6= i, has only one partner in common with xi. Since only
n1/2 − 2 variables besides xi are replaced by constants, there exists a partner

37

yj of xi such that yj is not replaced by a constant and no variable xi′ , i
′ 6= i,

which also is a partner of yj is replaced by a constant. The assignment where
xi = 0 destroys xiyj and all other terms xi′yj , i

′ 6= i, which belong to f∗∗n are
not influenced by this partial assignment. Hence, yj is not a term of the RSE of
the corresponding subfunction. The assignment where xi = 1 replaces xiyj by
yj and has no influence on the other terms xi′yj , i

′ 6= i, belonging to f∗∗n . Hence,
yj is a term belonging to the RSE of the corresponding subfunction. This proves
that the resulting subfunctions are not equal and f ∗∗n is (n1/2 − 1)-mixed.

Exercise 6.14. W.l.o.g. n = 3m. We claim that HWB∗
n is k-mixed for k =

m−3 = n/3−3. First we prove a simple number theoretical fact. Let wi = 2, if
i ≤ 2m, and wi = 1 otherwise. If J ⊆ {1, . . . , n} has a size of at least 2m+1, we
can define for each s ∈ {0, . . . , n− 1} the constants u∗j ∈ {0, 1}, j ∈ J , in such a
way that the sum of all wju

∗
j , j ∈ J , equals s. If s is odd, we choose some j ∈ J

such that wj = 1 and set u∗j = 1. Since |J | ≥ 2m + 1, such an index j exists.
We are left with the case of even s and an index set J such that |J | ≥ 2m. The
sum of all wj , j ∈ J , is at least 2m + m = n. If we assign successively 1 to all
u∗j , j ∈ J , such that wj = 2 and afterwards to all other u∗j , j ∈ J , we obtain at
least all even numbers in {0, . . . , n− 1} as partial sums.

In order to prove that HWB∗
n is k-mixed, let I be some set of k vari-

able indices and let u and v be different assignments to the corresponding
variables. The goal is to prove that fu 6= fv. Let J = {1, . . . , n} − I and
∆ =

∑

i∈I wivi −
∑

i∈I wiui :

Case 1: ∆ ≡ 0 mod n. Let i∗ ∈ I be chosen such that ui∗ 6= vi∗ . By the
claim above, we find an input u∗ with u∗i = ui for i ∈ I such that
s(u∗) :=

∑

i wiu
∗
i ≡ i∗ mod n. Let v∗ be the corresponding extension of v.

Since ∆ ≡ 0 mod n, we conclude that s(v∗) ≡ i∗ mod n. Hence, HWB∗
n(a∗) =

u∗i∗ 6= v∗i∗ = HWB∗
n(v∗).

Case 2: ∆ 6≡ 0 mod n. We fix some j ∈ J . Let l ≡ j + ∆ mod n. Obviously,
l 6= j. If l ∈ J , we assign the value 0 to xj and the value 1 to xl. If l 6∈ J ,
we assign the value 1 − vl to xj . Afterwards, we have at least 2m + 1 free
variables. Hence, we can construct an input u∗ with u∗i = ui for i ∈ I, u∗j = 0,
and u∗l = 1, if l ∈ J , and u∗j = 1 − vl, if l ∈ J , such that s(u∗) ≡ j mod n.
This implies HWB∗

n(u∗) = u∗j . Let v∗ be the corresponding extension of v.
Then s(v∗) ≡ j + ∆ ≡ l mod n. This implies HWB∗

n(v∗) = v∗l . If l ∈ J ,
u∗j = 0 and v∗l = 1. If l 6∈ J , u∗j = 1 − vl = 1 − v∗l . Hence, in both cases
HWB∗

n(u∗) 6= HWB∗
n(v∗).

Exercise 6.16. Let X = (xij) be the n × n-matrix of Boolean variables and
let V be an arbitrary subset of n − 1 variables. We investigate two different
assignments a and b to the variables in V . W.l.o.g. x11 ∈ V, a11 = 0 and
b11 = 1. Let si be the number of variables in V belonging to the ith row.
After renumbering we can assume that s2 ≥ · · · ≥ sn. In particular, si ≤ n− i
implying that sn = 0. We define a partial assignment c to the variables outside

38

V such that the input (a, c) leads to the output 1 and the input (b, c) leads to
the output 0. Free variables of the first row are replaced by ones. The variables
of the last row are replaced by the corresponding entries of the first row. This
implies that (a, c) leads to the output 1. We fix the remaining variables rowwise
in increasing order in such a way that for (b, c) the ith row, 2 ≤ i ≤ n − 1,
is different from the rows 1, . . . , i − 1, n. In the row i we have at least i free
positions leading to 2i possible vectors and we have to ensure there the row is
different from i given vectors. Since 2i > i for i ≥ 2, this is possible.

Exercise 6.17. (Solution from the Diploma Thesis of M. Sauerhoff, Univ.
Dortmund) We consider the function EARn (equal adjacent rows) defined on a
Boolean n× n matrix X = (xi,j)1≤i,j≤n by

EARn(X) =
∨

1≤i≤n−1

(xi,1 = xi+1,1) ∧ · · · ∧ (xi,n = xi+1,n).

We claim that EARn has exponential size even for k-OBDDs. Using the tech-
nique described in Chapter 7 of the book, we prove a lower bound of order

2Ω(
√

n/k).
Let G be an arbitrary k-OBDD for EARn with variable ordering π. Our

aim is to show that G can be used to construct a (2k − 1)-round communi-
cation protocol either for the equality function EQm or for the nondisjoint-
ness function NDISJm for some parameter m = Ω (

√
n). For input vectors

u = (u1, . . . , um), v = (v1, . . . , vm) ∈ {0, 1}m, these functions are defined by
EQm(u, v) = (u1 = v1)∧· · ·∧(um = vm) and NDISJm(u, v) = u1v1∨· · ·∨umvm.

Let X denote the input matrix as well as the set of all variables of EARn.
Let A be the set of the first

⌊

n2/2
⌋

variables of EARn according to the given
variable ordering π, and let B := X − A. For each choice of the input vectors
u and v for EQm, we are going to define input assignments au to A and bv

to B such that EARn applied to the joint assignment (au, bv) to all variables
yields the output EQm(u, v). For this, we will choose special variables from A
and B which will be used to encode the input vectors u and v, resp., of EQm.
Furthermore, the remaining variables will be set to constants in such a way that
the function EARn does not become a constant function and still depends on
all values of the special variables.

If we have defined the input assignments au and bv in the described way,
we can apply the construction from Chapter 7 to obtain a (2k − 1)-round com-
munication protocol for EQm with complexity (2k − 1) · dlog |G|e. Since the
deterministic communication complexity of EQm, C(EQm), is equal to m, we
get

log |G| ≥ C(EQm)/(2k − 1)− 1 = m/(2k − 1)− 1 = Ω
(√

n/k
)

.

This gives the desired lower bound for EARn. For certain variable orderings, we
alternatively choose NDISJm instead of EQm in the above construction. The
proof works in the same way, since also C(NDISJm) = m.

39

We first describe how the special variables from A and B for the construction
of the assignments au and bv are chosen. For this, we have to introduce some
notation. Let C = (cij)1≤i,j≤n be the Boolean matrix defined by cij = 1 if
xij ∈ A, and cij = 0 if xij ∈ B. For i = 1, . . . , n, define ci = (ci,1, . . . , ci,n),
the ith row of C. Notice that C contains

⌊

n2/2
⌋

1-entries and
⌈

n2/2
⌉

0-entries.
For arbitrary Boolean vectors x, y, let d(x, y) denote the Hamming distance of
x and y. Finally, define ‖x‖ := d(x, 0), i. e., ‖x‖ is the number of 1-entries in x.

Call a row of C with index i split if there are indices j, k such that ci,j 6= ci,k.
The following lemma is crucial for the choice of the special variables:

Lemma:

(1) There is an index i0 ∈ {1, . . . , n− 1} such that d(ci0 , ci0+1) ≥ b√nc, or

(2) there are at least b√nc split rows.

Proof of the Lemma: Define I := {i | 1 ≤ i ≤ n, ‖ci‖ = 0 ∨ ‖ci‖ = n}.
Notice that a row is split exactly if its index is not contained in I. Hence, if
|I| ≤ n− b√nc, (2) is fulfilled and we are finished.

Let us assume now that |I| > n−b√nc. Since C contains only around n2/2
0- and 1-entries each, there are two rows with indices ` and h such that ‖c`‖ = 0
and ‖ch‖ = n if n is large enough. We assume that ` < h for the following,
the case ` > h is handled analogously. Furthermore, we assume that ` is the
largest row index such that ‖c`‖ = 0, and that h is the smallest row index with
‖ch‖ = n. Then `+1, `+2 . . . , h− 1 6∈ I, and thus |`−h| ≤ n−|I|+1 < b√nc.
We now can conclude that there are two adjacent rows with index between `
and h whose Hamming distance is not too small. We have

∣

∣‖c`‖ − ‖ch‖
∣

∣ = |d(c`, 0)− d(ch, 0)|
≤ d(c`, ch)

≤ d(c`, c`+1) + · · ·+ d(ch−1, ch)

≤ (h− `) · max
`≤i≤h−1

d(ci, ci+1).

Thus, there is a row index i0 with ` ≤ i0 ≤ h − 1 such that d(ci0 , ci0+1) ≥
n/b√nc ≥ b√nc, i. e., (1) is fulfilled. 2

Now we are ready to construct the desired assignments to the variables of
EARn.

First, assume that Case (1) in the above lemma occurs, i. e., d(ci0 , ci0+1) ≥
b√nc for some row with index i0. Then we can choose m := b√nc columns with
index j such that xi0,j ∈ A and xi0+1,j ∈ B or vice versa. Let u, v ∈ {0, 1}m

be an arbitrary pair of input vectors for EQm. Assign the value of uj to the
A-variable in the jth of these columns, and the value of vj to the respective B-
variable. For all other columns with index j, assign the same constant to both
variables xi0,j and xi0+1,j (independent of u and v). Finally, fix all remaining
variables such that no adjacent rows are equal. For the assignments au to A
and bv to B obtained by this construction, we obviously have EARn(au, bv) =
EQm(u, v).

40

The Case (2) is a little bit more difficult. First, we observe that there are
either at least bb√nc /2c split rows with even index, or at least as many split
rows with odd index. W. l. o. g., we only consider the latter case here. We
choose m := bb√nc /2c − 1 of the split rows whose index i is odd and for which
i + 1 ≤ n. Let R = {r1, . . . , rm} be the set of indices of these rows.

We now construct assignments au to A and bv to B for given vectors u, v ∈
{0, 1}m such that EARm(au, bv) = NDISJm(u, v). For each row ri ∈ R, which
is a split row, there are columns ci and di such that xri,ci

∈ A and xri,di
∈ B.

Assign the value ui to xri,ci
and the value vi to xri,di

. The rest of the variables
are fixed independently of u and v. For each row ri ∈ R, we assign 1 to the
variables xri+1,ci

and xri+1,di
. Fill the two adjacent rows ri and ri +1 with the

constant 0, if ri ≡ 1 mod 4, and with the constant 1 if ri ≡ 3 mod 4. The last
remaining rows of unfixed variables not considered so far are alternatingly filled
with constants such that no two adjacent rows except for the rows with indices
ri and ri + 1, i = 1, . . . , m, can be equal.

This construction has the following effect. The obtained matrix has a pair
of equal adjacent rows if and only there is an ri ∈ R such that ui = vi = 1.
Hence, we have EARn(au, bv) = NDISJ(u, v) for the assignments au to A and
bv and B obtained by the construction. 2

Exercise 6.18. The claimed space bound is O(|G|+n|H|). The representations
of the functions fv where v is a node of the FBDD G are no longer computed
bottom-up but in the order of the last visit of a DFS traversal. For each point
of time we distinguish three types of nodes of G. A node is unvisited if it
has not been reached by the DFS traversal. It is called finished if the DFS
traversal starting at the node is finished. All other nodes are called visited. We
have computed π-OBDDs for all fv where v is finished but we only store those
π-OBDDs representing a function fv such that v has no finished predecessor. For
all other finished nodes we only store a pointer to one the finished predecessors.
Each finished node without a finished predeccessor has a visited predecessor.
The number of visited nodes during a DFS traversal of an FBDD is bounded
by n. Each one of them has at most two finished successors (in fact, only the
last one can really have two finished successors). Hence, we only store O(n)
π-OBDDs each of size bounded above by |H|. Whenever we need the π-OBDD
for fv which is no longer stored, we find in O(n) steps a predecessor w such
that the π-OBDD for fw is stored. Applying the appropriate replacements by
constants to this π-OBDD we obtain a π-OBDD for fv. This extra time does
not increase the asymptotic run time.

Exercise 6.20. It is easy to guess an input and to verify whether f(a) = 1 and
g(a) = 0. The NP-hardness is proved by the following reduction from SAT. An
input c1, . . . , cm of clauses on x1, . . . , xn corresponds to the formula c1∧· · ·∧cm

which efficiently can be transformed into a BP (see Theorem 2.1.3.ii). The jth
node labeled by xi is replaced by an xi,j-node. This leads to an OBDD G1 for
some ordering of the xi,j-variables, since each variable is the label of only one
node. We also can efficiently construct a second OBDD G2 testing whether all

41

variables xi,· have the same value. Let f be the function represented by G1 and
let g be the negation of the function represented by G2. If f ≤ g, all inputs
satisfying f have some pair (xi,j , xi,j′) of variables such that xi,j and xi,j′ have
different values. Hence, there is no satisfying input for c1, . . . , cm. If f ≤ g
is not true, there is an input satisfying f and not satisfying g. Hence, all xi,·-
variables have the same value and the input for c1, . . . , cm where xi takes the
common value of all xi,·-variables satisfies c1, . . . , cm.

Exercise 6.21. A pair of nodes (v, w) ∈ VG×VH is called compatible if the BP
with source w is a G(v)-FBDD where G(v) is the graph ordering with source
v. We like to decide whether (v∗, w∗) for the sources v∗ of G and w∗ of H is
compatible. If v′ is the sink of G and w′ a sink of H, (v′, w′) is compatible. Let
(v, w) ∈ VG × VH . If label(v) = label(w), (v, w) is compatible iff (v0, w0) and
(v1, w1) are compatible where v0, v1, w0, w1 are the successors of v and w resp. If
label(v) 6= label(w), (v, w) is compatible iff (v0, w) and (v1, w) are compatible.
This follows, since we never omit a test in G. Hence, the simultaneous DFS
traversal through G and H with the above rules for the definition of the successor
decides whether H is a G-FBDD. This is the case iff all reachable pairs of nodes
are shown to be compatible.

Exercise 6.22. It is obvious that all ∗-sinks can be merged and that one ∗-sink
is necessary. Hence, level n + 1 has a canonical representation obtained by the
application of the merging rule. Let us assume that the levels i + 1, . . . , n + 1
have a canonical representation such that each node on level j describes a graph
ordering on n− j + 1 variables which is part of the given graph ordering and is
obtained by a certain assignment a to j − 1 variables which are tested first for
the partial input a. Let us consider a representation of the graph ordering where
the levels i + 1, . . . , n + 1 are reduced. An application of the merging rule does
not change the variable ordering. If two nodes on level i cannot be merged, they
represent different graph orderings. Either they have different labels or their
0-successors represent, because of the canonicity of the lower part, different
graph orderings or the property holds for the 1-successors. If two nodes on level
i represent the same graph ordering, they have the same label and, because of
the canonicity, the same 0-successors and the same 1-successors. Hence, they
can be merged. We have proved that the application of the merging rule leads
to the minimal size of the ith level representing all different graph orderings on
n− i+1 variables which are part of the given graph ordering. The labels of the
nodes are canonical and so are their successors.

Exercise 6.23. We start with the reduced representation of G (see Exer-
cise 6.22). If we treat two edges from v to w as one edge, there are as many
paths from the source to a ∗-sink as there are different variable orderings. Let
π1, . . . , πr be the different variable orderings. Let pi be the path describ-
ing πi and let mi be the monomial describing the inputs following pi. Then
m1 + . . . + mr = 1. Let h be the function represented by H and let f be the
function represented by I. It is sufficient to check whether h ∧mi = f ∧mi for
all i. We replace H and I with equivalent complete FBDDs H ′ and I ′. Then

42

it is easy to obtain FBDDs H ′
i and I ′i representing h ∧mi and f ∧mi resp. If

xj ∈ mi, 0-edges leaving xj-nodes are redirected to the 0-sink. The same is
done for 1-edges leaving xj-nodes if xj ∈ mi. The crucial fact is that Hi is an
OBDD, since G prescribes for all inputs a where mi(a) = 1 the same variable
ordering. We can apply Theorem 6.3.6 to check the equivalence of Hi and Ii.
The whole algorithm runs in time O(r(|I ′| + n · |H ′|)) and r is polynomially
bounded by assumption.

Exercise 6.24. The size is 3. We only have to represent the function yn, any
other information is contained in the transformation . The claim can be proved
in the following way. We start with the complete FBDD for HWBn constructed
in the proof of Theorem 6.1.4. We obtain a τG-TBDD by replacing the node on
the ith level by yi. The crucial observation is that all nodes on the nth level
represent yn. This implies that the whole τG-TBDD represents yn.

Exercise 6.25. We consider the FBDD and DT constructed in the proof of
Theorem 6.1.3. We relabel all sinks by ”∗” and merge them to one ∗-sink.
For each edge from an inner node v to the ∗-sink we add an arbitrary variable
ordering of the variables not tested on the path to v. This defines a graph
ordering G. For this graph ordering, we obtain in the following way a τG-
TBDD representing ISAn. We work with the variables z1, . . . , zn+k. The FBDD
for ISAn has 2k + 1 levels of inner nodes. They are relabeled levelwise by
z1, . . . , z2k+1. The z2k+1-level only contains nodes representing z2k+1. These
nodes can be merged. Let us consider the subtrees whose roots are labelled by
zk+1. We number these subtrees from left to right by T0, . . . , Tn−1. The tree Ti

has n = 2k nodes vi,0, . . . , vi,n−1 in distance k from the root. The nodes vi,j ,
i ≤ j ≤ i + k − 1 are labelled by constants, all other vi,·-nodes represent z2k+1.
All nodes in distance d from the root of Ti are roots of a subtree containing a
subsequence of 2k−d of the nodes vi,0, . . . , vi,n−1. All but O(k) nodes of Ti are
roots of subtrees which represent z2k+1. All these nodes can be merged and the
τG-FBDD size of ISAn can be bounded above by O(n log n).

Exercise 6.26. In order to evaluate a τG-TBDD G′ on the input a =
(a1, . . . , an) we have to follow the path activated in G′ by this input. If we
reach a yi-node of G′ we have to switch to the τi(a)-successor. For this reason
we have to follow the path in G activated by a. If the ith node on this path is
labelled by xj , τi(a) = aj .

Exercise 6.27. We start with the graph ordering G and replace the c-successor
of xi-nodes by the c-sink. Then the inner nodes on level j are relabelled by yj .
If we evaluate this τG-FBDD (see the solution of Exercise 6.26), we reach as last
inner node a node which has replaced an xi-node in G. If ai = c, we reach the
c-sink. Hence, the τG-FBDD represents xi.

Exercise 6.28. We test the rows in the order 1, . . . , m. Whenever a row con-
tains no 1-entry, we reach a sink labelled by the corresponding row. Otherwise,

43

we store the ones ever seen. Whenever we have seen two ones in the same col-
umn, we reach a sink labelled by the corresponding column and the two entries
with the ones. We reach a sink after having tested at most n + 1 rows. Hence,
the depth is bounded by n(n + 1). The width is bounded by (n + 1)n, since it
is sufficient to distinguish for each of the n columns whether we have not seen
a 1-entry or which of the first n rows contains the only seen 1-entry. Hence, we
obtain an OBDD whose size is bounded by n(n + 1)(n + 1)n = 2O(n log n).

44

Chapter 7

Exercise 7.1. For each BP node v let Av be an array of length n initialized with
zeros. We perform a DFS traversal of G. At the end of the traversal starting
from the xi-node v we consider the arrays Av0

and Av1
for the direct successors

v0 and v1 of v. We set Av to the bitwise disjunction of Av0
and Av1

. We stop
with the result that G is not an FBDD if Av has a 1 at position i. Otherwise,
we replace the 0 at position i of Av by 1. We stop with the result that G is an
FBDD if we finish the DFS traversal without having obtained the result that
G is not an FBDD. The run time of the algorithm is obvious. The correctness
follows from the claim that Av finally contains a 1 at position j iff the FBDD
with source v contains at least one xj-node. This can be proved by induction on
the nodes according to the point of time at the end of the corresponding DFS
traversal. The claim holds for nodes whose successors are sinks. The induction
step is obvious.

Exercise 7.2. The BP G is not an OBDD if it contains an edge from an xi-
node to an xi-node. Otherwise, we interpret an edge from an xi-node to an
xj-node as xi < xj . We obtain at most 2|G| such conditions. There are well-
known algorithms for topological sorting which decide in time O(|G|) whether
the relation ”<” can be embedded into a complete ordering of all variables which
occur as node labels of G. The BP G is an OBDD iff this is possible. In the
positive case, we obtain a variable ordering.

Exercise 7.3. We start with a complete binary tree T of depth O(log n)
and, therefore, polynomial size. We test at all nodes of each level the same
variable. At each leaf we have to represent a subfunction f ′ of f on n−O(log n)
variables. We obtain a BP Gf ′ representing f ′ from the polynomial-size BP
Gf representing f by replacement by constants. The size of Gf ′ is not larger
than the size of Gf . The total size of the new BP representing f is polynomially
bounded, since it contains besides the tree of polynomial size polynomially many
BPs each of a size not larger than the size of Gf . Moreover, the O(log n)
variables tested in the tree are tested on each computation path only once.

Exercise 7.4. In the top part we use an OBDD on x1,2, . . . , x1,n to count the
number of edges adjacent to vertex 1. This part has size O(n2). At the sink
reached by all inputs where the degree of vertex 1 equals k we go on in the same
way as for the test whether the graph is k-regular (see Theorem 7.2.6). For each
k, O(n3) nodes are sufficient, altogether O(n4) nodes.

Exercise 7.5. We use n blocks and in the ith block we use some ordering of
the variables which describe hyperedges containing the vertex i. This leads to
an oblivious k-BP, since each hyperedge of a k-uniform hypergraph contains k
vertices. Each block contains

(

n−1
k−1

)

variables and we check whether there are

exactly d
(

n−1
k−1

)

/2e ones among these variables. Such a block has a size bounded

above by
(

n−1
k−1

)2
and the whole size of the k-BP is bounded above by n

(

n−1
k−1

)2
+2

which obviously is polynomially bounded in the number
(

n
k

)

of variables.

45

Exercise 7.6. A k-uniform hypergraph consists of a hyperclique on dn/2e
vertices and bn/2c isolated vertices iff the degree of bn/2c vertices is 0 and the

degree of dn/2e vertices equals
(dn/2e−1

k−1

)

. Hence, we use the same labelling of
the levels as in Exercise 7.5. For the ith block we check whether the degree of
vertex i is 0 or

(dn/2e−1
k−1

)

. Moreover, we count the number of isolated vertices
and accept an input iff the degree of each vertex has one of the two admissible
values and the number of isolated vertices equals bn/2c. Altogether, we have

at most n2 modules and the size of each module is bounded above by
(

n−1
k−1

)2
.

Hence, the size is polynomially bounded.

Exercise 7.8. Let us consider a variable ordering πd where the variables are
ordered according to hyperplanes in direction d. The function Hd(X) mod q
can be represented in size O(N) (see the proof of Proposition 7.2.9). Let us
investigate πd-OBDDs for the representation of Hr(X) mod q where r 6= d. The
function Hr(X) mod q is the mod q sum of n parity functions. It is sufficient
to store for each parity function the partial parity sum of the tested variables.
Hence, a width of 2n and a size of O(N2n) is sufficient. Moreover, size O(N 22n)
is sufficient to compute Hd(X) mod q and Hr(X) mod q in a πd-OBDD with q2

sinks.
Altogether, we design a (k − 1)-IBDD using the variable orderings π1, . . . ,

πk−1. For CHSPk
q , we check in the first layer whether H1(X) ≡ 0 mod q and

we go on in the same way for the layers 2, . . . , k − 2. In the last layer we check
whether Hk−1(X) ≡ 0 mod q and Hk(X) ≡ 0 mod q. The size of this (k − 1)-

IBDD is bounded above by O(kN + N 22n) = 2O(N1/k). For HSPk
q , we obtain

the same asymptotic bound with some obvious changes.

Exercise 7.9. We use the school method for multiplication and describe a BP
for an arbitrary output bit. We obtain an n× 2n-matrix with the entry xiyj in
the row i, 0 ≤ i ≤ n− 1, and column i + j (the columns are numbered from left
to right). We partition the matrix to blocks of size n × (2dlog ne). In each of
the at most dn/ log ne layers we compute the sum of the carry and the sum of
the n 2dlog ne-bit numbers of the block. The carry and the sum of the number
of a block (including the carry from the last block) are O(log n)-bit numbers
and we have to distinguish only polynomially many values. For each block, we
design an FBDD. The sum is computed by considering the bits rowwise. Then
it is sufficient to test each xi once and to store always only one x-value. A
yj-variable contributes to at most 2dlog ne consecutive rows. Since we can test
yj only once, we have to store it for a while. At each point of time it is sufficient
to store 2dlog ne y-bits. Altogether, we have to store not more than O(log n)
bits leading to polynomial size. The computation can be stopped if we know
the value of of the output bit.

Exercise 7.11. The first part follows similarly to the solution of Exercise 7.9.
In order to compute x1w1 + · · ·+ xnwn we may consider an n× (n + 1)-matrix
containing rowwise the binary representations of w1, . . . , wn. The ones in the
row containing wi are replaced by xi. Then we have to compute the sum of

46

these numbers and have to compare this sum with the given threshold value t.
After having considered the ith block (see the solution of Exercise 7.9) we know
the carry and whether the tail of the binary representation of x1w1 + · · ·+xnwn

is larger than, smaller than, or equal to the tail of the binary representation of
t. At the end we know the output of the general threshold function.

We can improve the solution of Exercise 7.9 and can obtain a polynomial-
size dn/ log ne/2-BP for multiplication. It is only necessary to enlarge the blocks
to size n × (4dlog ne). We obtain a representation of the squaring function by
replacing yi by xi. Since xi and yi are tested on each computation path at
most dn/ log ne/2 times, the variable xi is after this replacement tested at most
dn/ log ne times.

Exercise 7.12. Let G(k) be the graph consisting of k copies of G where the
sink of the ith copy, 1 ≤ i ≤ k−1, is replaced by the source of the (i+1)th copy.
Let H be a k-G-FBDD. With a simultaneous DFS traversal through G(k) and
H it is possible to partition H to k layers where the ith layer, 1 ≤ i ≤ k − 1, is
a G-FBDD whose outgoing edges lead to nodes of one of the layers i + 1, . . . , k.
The kth layer is a G-FBDD.

For the synthesis of k-G-FBDDs H1 and H2, we replace xj-nodes of the ith
layer of G(k), H1, and H2 by xj,i-nodes. Then we obtain a graph ordering G∗ on
the new set of variables and G∗-FBDDs H∗

1 and H∗
2 . We perform the synthesis

of H∗
1 and H∗

2 as G∗-FBDDs. Let the result be the G∗-FBDD H∗. In H∗ we
replace xj,i-nodes by xj-nodes in order to obtain the k-G-FBDD representing
the result of the synthesis of H1 and H2.

The satisfiability test for a k-G-FBDD H can be performed in a way sim-
ilar to the case of k-OBDDs (see Theorem 7.3.3). We obtain the time bound
O(|G|k|H|2k−1) if we apply the result on the run time for G-FBDD synthesis
steps.

Exercise 7.13. It is easy to guess an input a and to verify that the computation
path for a contains repeated tests for at least two variables.

For the NP-hardness proof we design a polynomial-time reduction of 3-SAT
to our problem. Let c1, . . . , cm be 3-SAT clauses over the variables x1, . . . , xn.
We consider the (1, +1)-BP G constructed in the proof of Theorem 7.3.2. We
know that c1, . . . , cm are satisfiable iff G is satisfiable. Let G∗ be obtained from
G by replacing the 1-sink by a constant size BP H on some y-variables which
is not a semantic (1, +1)-BP. If c1, . . . , cm are not satisfiable, all computation
paths of G∗ only run through G and reach the 0-sink. Hence, G∗ is a semantic
(1, +1)-BP. If c1, . . . , cm are satisfiable, there is an assignment to the x-variables
leading to the source of H and an assignment to the y-variables such that two
y-variables are tested at least twice. Hence, in this case, G∗ is not a semantic
(1, +1)-BP.

Exercise 7.14. The solution of this exercise is due to Detlef Sieling.
The inconsistency test is contained in NP, since it suffices to guess a path

in the given branching program and to verify that more than k variables are
tested more than once.

47

We provide a polynomial time reduction from 3-SAT to the inconsistency
test. Let (X, C) be an instance for 3-SAT, where X = {x1, . . . , xn} is the set of
variables and C = {C1, . . . , Cm} is the set of clauses. Let p(i) be the number
of occurrences of xi (negated and unnegated) in all clauses. We introduce new
variables bi,1, . . . , bi,p(i), ci,1, . . . , ci,p(i). If the lth occurrence of xi is unnegated,
we replace it by bi,l. If the lth occurrence of xi is negated, we replace it by ci,l.
We note that afterwards only one of the variables bi,l and ci,l occurs in the
clauses, and it occurs exactly once. Furthermore, we introduce new variables
a1, . . . , an, d1, . . . , dm, e. For each variable xi ∈ X we construct the component
described in Figure 1.

ai

ci,1 bi,1

ci,p(i) bi,p(i)

.

.

.

.

.

.

1

Figure 1

In order to simplify the presentation we use the convention that in the figures
omitted edges lead to the 0-sink.

For each clause Cj , e.g., for the clause Cj = bi1,l1 ∨bi2,l2 ∨ci3,l3 , we construct
the component described in Figure 2.

We note that the 0-sink of this component is in particular reached for those
paths on which only variables that are not contained in the clause are tested.

We glue all these components together by replacing the 1-sink of each com-
ponent by the source of the next component. Finally, we replace the 1-sink of
the last component by the branching program described in Figure 3.

We call the constructed branching program P . Let k =
∑n

i=1 p(i). Then (P, k)
is the constructed instance for the inconsistency test. We claim that (X, C) is
satisfiable iff there is some path in P on which at least k+1 variables are tested
repeatedly.

Only-if Part Let φ(x1), . . . , φ(xn) be a satisfying assignment for (X, C).
We choose a path in P in the following way. In the component for xi we

48

0

ci3,l3

ci2,l2

ci3,l3

bi1,l1

bi3,l3 bi3,l3 ci3,l3

ci2,l2

ci3,l3bi3,l3 bi3,l3

ci1,l1

bi2,l2bi2,l2

1

di

Figure 2

1

e

e

Figure 3

choose the path from the source to the 1-sink via the bi,·-tests, if φ(xi) = 1,
and otherwise the path from the source to the 1-sink via the ci,·-tests. Now
assume that in the clause Cj the literal bi,l occurs. If φ(xi) = 1 we choose the
path through the component for Cj in such a way that a bi,·-node is passed.
If φ(xi) = 0, we choose the path in such a way that a ci,·-node is passed.
Since φ is a satisfying assignment, we reach the 1-sink of this component. In
the component consisting of the tests of e we choose an arbitrary path to the
1-sink.

On the constructed path the variable e is tested twice. If φ(xi) = 0, each
variable ci,l is tested twice. If φ(xi) = 1, each variable bi,l is tested twice.
Altogether, there are 1 +

∑n
i=1 p(i) = k + 1 repeated tests.

If Part Assume that there is a path p in P on which at least k + 1 =
1+

∑n
i=1 p(i) variables are tested repeatedly. We note that the a- and d-variables

49

cannot be tested repeatedly since there is only one node labeled by each of these
variables. By the construction of the component for the variable xi the following
holds: If some ci,·-variable is tested repeatedly, then each bi,·-variable is tested
at most once and vice versa. Since for each bi,·- and each ci,·-variable there are at
most two tests, each repeated variable is tested at most twice. We conclude that
on p for each i either all bi,·- or all ci,·-variables are tested repeatedly and that,
furthermore, the e-variable is tested repeatedly, because otherwise the number
of repeated tests would not exceed k.

We choose φ(xi) = 1, if on the path p the 1-edge leaving the ai-node is
chosen, and otherwise φ(xi) = 0. We claim that φ is a satisfying assignment for
(X, C). Let us assume the contrary, i.e., there is a clause Cj that is not satisfied.
W.l.o.g. let Cj = xi1 ∨ xi2 ∨ xi3 . Then after the replacement of x-variables by
b- and c-variables we have Cj = bi1,l1 ∨ bi2,l2 ∨ ci3,l3 . Since Cj is not satisfied,
we have φ(xi1) = 0, φ(xi2) = 0 and φ(xi3) = 1. By the choice of φ in the
component for xi1 the path on which the ci1,·-variables are tested is chosen. As
observed above the ci1,·-variables have to be tested repeatedly. Hence, in the
component for Cj the path p runs through a node labeled by ci1,l1 and it does
not run through a node labeled by bi1,l1 . By the same arguments the path p
runs through a node labeled by ci2,l2 and through a node labeled by bi3,l3 . But
then in the component for Cj the 0-sink is reached, i.e., on p the variable e is
not tested repeatedly. Hence, on p at most k variables are tested repeatedly.
By this contradiction it follows that all clauses are satisfied.

Exercise 7.15. The consistency tests for s-oblivious BDDs with given s,
k-OBDDs with given π, and k-IBBDs with given π1, . . . , πk can be performed
as consistency tests for s-oblivious BDDs G with the corresponding sequence
s = (s1, . . . , sl). As described in the proofs of Theorem 7.3.5 and Theorem 7.3.3
we try to partition G into l + 1 layers according to s with an additional layer
for the sinks. This algorithm is successful iff G is an s-oblivious BDD.

For k-BPs we generalize the solution of Exercise 7.1. Here we define Av[j] :=
δ(ind(v), j)+max{Av0

[j], Av1
[j]} where ind(v) is the index of the label of v and

δ(i, j) = 1, if i = j, and δ(i, j) = 0 otherwise. Then Av[j] is the largest number
of xj-tests on a path starting at v. The BP is a k-BP if no Av-entry is larger
than k.

Exercise 7.16. We use the given variable ordering x0, . . . , xk−1, y0, . . . , yk−1,
z0, . . . , zk−1. In the top part we have k3 sinks representing the different values
of (||x|| mod k, ||y|| mod k, ||z|| mod k). The width of this part is bounded by
k3 and the size is bounded by O(nk3) = O(n4). At each sink we know the three
variables whose parity has to be computed. The parity of these three variables
is computed according to the given variable ordering in constant size. Hence,
the total size of the 2-OBDD is O(n4). The bottom part has depth 3. Therefore,
we have also constructed a (1, +3)-BP.

Exercise 7.18. W.l.o.g. n is a multiple of 4. The solution of Exercise 4.18
implies for each variable ordering π that we may fix the z-variables and some
x- and y-variables in such a way that we have to represent (after renumbering)

50

f = x1y1+· · ·+xn/4yn/4 with a variable ordering where all x-variables are tested
before all y-variables. Hence, it is sufficient to prove an exponential lower bound
on the k-OBDD size of this subfunction and variable orderings of the considered
type. We claim that the following set S of 2n/4 inputs is a fooling set if Alice
gets the x-variables. Let S contain the vectors (a1, . . . , an/4, b1, . . . , bn/4) where
bi = ai for all i ∈ {1, . . . , n/4}. Obviously, f(a, b) = 0, if (a, b) ∈ S. Let (a′, b′)
and (a′′, b′′) be different elements from S. Then there exists an index i such that
a′i = 1 and a′′i = 0 (or vice versa). Then b′′i = 1 and f(a′, b′′) = 1. Hence, the
communication complexity is bounded below by n/4 leading to an exponential
lower bound on the k-OBDD size (see Section 7.5).

Exercise 7.19. Theorem 5 of the paper ”Hierarchy theorems for k-OBDDs and
k-IBDDs” by Bollig, Sauerhoff, Sieling, and Wegener published in Theoretical
Computer Science 205, 45-60, 1998, contains the statement that in this situation
the size of (k−1)-OBDDs is bounded below by 2Ω(n/k) which is non-polynomial
if k = o(n/ log n). The proof is presented on the pages 52-53 of that paper.

Exercise 7.20. Here we refer to Theorem 6 (and its proof) of the paper
mentioned in the solution of Exercise 7.19 (pages 54-55). We obtain a lower

bound of 2Ω(n/k2k) for (k−1)-IBDDs which is non-polynomial if k ≤ (1−ε) log n
for some ε > 0.

51

Chapter 8

Exercise 8.1. We have no choice how to define f(1, a2, . . . , an) but
f(0, a2, . . . , an) may take an arbitrary value independently from all the other
values. Hence, the number of functions f ∈ Bn which are 1-simple with respect
to x1 is equal to 22n−1

.

Exercise 8.2. It follows from Proposition 8.1.2 that, if π = id, the partial
input (a1, . . . , ai−1) has to lead in a complete π-ZBDD representing f to an
xi-node representing x1 · · ·xi−1f|x1=a1,...,xi−1=ai−1

. All these different functions
have to be represented at different nodes. However, it is also sufficient to have
nodes for these different functions. Then there is no choice how to direct the
edges. Hence, complete π-ZBDDs are a canonical representation. If all nodes
are reachable from the source, each complete π-ZBDD representing f does not
represent other functions than described above. We apply the merging rule
levelwise bottom-up. This leads to a unique sink level. If the xj-levels, j > i,
are reduced, two xi-nodes representing the same function can be merged.

Now we consider non-complete π-ZBDDs representing f . If the compu-
tation path for a does not contain an xi-node, the same holds for all inputs
b where b1 = a1, . . . , bi−1 = ai−1. By the evaluation rule, f(b) = 0 for all
these inputs where additionally bi = 1. Hence, f|x1=a1,...,xi−1=ai−1

and also
x1 · · ·xi−1f|x1=a1,...,xi−1=ai−1

are 1-simple with respect to xi. We conclude that
all those functions which are not 1-simple with respect to xi have to be rep-
resented at xi-nodes. Again, it is sufficient to have nodes for these functions
and then we have no choice how to direct the edges. A π-ZBDD representing
f and containing no nodes not reachable from the source can represent only
those functions representable in a complete π-ZBDD of the same kind. The
reduction is also performed levelwise bottom-up. If the xj-levels, j > i, are re-
duced, xi-nodes representing the same functions can be merged and an xi-node
representing a function which is 1-simple with respect to xi has the 0-sink as
1-successor and can be eliminated.

Exercise 8.3. The following figure shows a complete π-OBDD and π-ZBDD
representing fn for n = 4. It should be clear how this figure looks for general n.
All nodes marked with a “∗” can be eliminated by the OBDD elimination rule.
Hence, the π-OBDD size equals 2n + 2. Only the nodes marked with a “◦” can
be eliminated by the ZBDD elimination rule. The reduced π-ZBDD contains
1+ · · ·+n = 1

2n2+ 1
2n x-nodes and 2 sinks. There are n−1 y-nodes representing

the constant 1 and there are n+· · ·+1 = 1
2n2+ 1

2n further y-nodes. Hence, the π-
ZBDD size equals n2+2n+1. For this example, π-ZBDD(f) ≥ n·π-OBDD(f)/2
and we get a better trade-off than for MUXn in Example 8.1.7.

52

x3

x4

y1

y2

y3

x4 x4

x3

x2

y1

y2

y3

y4

y1

y2

y3

y1

y2

y3

y4

x1

x2

x3

x4

y1

y2

y4

10

◦

◦

◦

◦

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗∗

∗

∗

∗

∗

∗

∗

Exercise 8.4. We consider a reduced π-OBDD (w.l.o.g. π = id) for a symmetric
function f . Each edge leaving an xi-node leads to an xi+1-node or to a sink.
Hence, it is sufficient to add at most one xi-node representing 0 and one xi-
node representing 1 in order to obtain a complete π-OBDD representing f .
This implies that the reduced π-OBDD representing f is at most by 2n nodes
smaller than the quasi-reduced π-OBDD representing f . This quasi-reduced
π-OBDD representing f is also the quasi-reduced π-ZBDD representing f . We
can eliminate the nodes representing 0 also by the ZBDD elimination rule. If
the 1-edge leaving an xi-node v leads to a node representing 0, the represented
function is 1-simple with respect to xi. Because of the symmetry of f , the
0-edge leads to a sink or to an xj-node representing a function which is 1-
simple with respect to xj . Hence, the node v can be replaced by the constant

53

0 or by the constant 1. This implies that the reduced π-ZBDD representing
f is at most by 2n nodes smaller than the quasi-reduced OBDD or ZBDD
representing f . Since the nodes representing 0 can be eliminated in both cases,
|OBDD(f)− ZBDD(f)| ≤ n for symmetric functions f ∈ Bn.

Exercise 8.6. We solve this exercise with a figure similar to Figure 5.7.1.

swap(i)

u11u10u01u00

u

u1u0

u11u10u01u00

v1

uu0 u1u u0 u

u u0

u u

xi+1

xi+1

xi

v0v0

u0 u1 u0 u1 u00 u01 u1

u0 u1 u0 u1 u00 u01 u1

uxi

u0 u10

u1

u

u11

u0 0 u10

v0 v1

u u1

u11

Exercise 8.7. We obtain the same upper bounds for the swap operation as in
the OBDD case (see the solution of Exercise 8.6). Indeed there is one case (the
third one) where we save one node in comparison to the OBDD case. Hence,
the two bounds in Theorem 5.7.4 and Theorem 5.7.5 which are based on the
implementation of a jump operation as sequence of swap operations also hold
for the ZBDD case. Also the second bound from Theorem 5.7.4 holds also in the
ZBDD case. The arguments can be used word-for-word. Finally, we also can
prove the first bound of Theorem 5.7.5 for ZBDDs. We use the same notation.
Then s∗k = sk, if k ≤ i − 1 or k ≥ j + 1. For an xk-level, i + 1 ≤ k ≤ j, we
have to consider the functions xig0 + xig1 which are not 1-simple with respect
to xk, where gc is a subfunction of f|xi=c obtained by assigning constants to
x1, . . . , xi−1, xi+1, . . . , xk−1. At least one of the functions g0 or g1 has to be not
1-simple with respect to xk. This leads to the same upper bound on s∗k as in
the proof of Theorem 5.7.5. In order to estimate s∗i we have to consider the
functions xig0 + xig1 which are not 1-simple with respect to xi, i.e., g1 has to
be different from the constant 0. This again leads to the same upper bound on
s∗i as in the proof of Theorem 5.7.5.

54

Exercise 8.8. If G is the quasi-reduced π-ZBDD or π-OBDD representing f ,
the variable xi is redundant iff the two edges leaving an arbitrary xi-node lead
to the same node. Here we can restrict ourselves to reduced π-ZBDDs G′. An
xi-node v of G is eliminated iff the function represented at v is 1-simple with
respect to v. The only function which is 1-simple with respect to xi and does
not essentially depend on xi is the constant 0. Hence, f essentially depends on
xi iff some path from the source to a sink reaches an xi-node with two different
successors or crosses the xi-level and does not reach immediately the 0-sink.
This can be checked by a simple DFS traversal.

Exercise 8.9. We consider the function ZMUXn (zero-suppressed multiplexer),
see Example 8.1.7. The size of the reduced π-ZBDD for the variable ordering
x0, . . . , xk−1, y0, . . . , yn−1 equals 2n + 2. We like to replace y0 by 0. We create
n− 1 dummy nodes, one for each yi-node vi, 1 ≤ i ≤ n− 1. The dummy node
v′i for vi is labelled by y0, its 0-successor is vi and its 1-successor is the 0-sink.
The only edge leading to vi is redirected to lead to v′i. Replacing y0 by 0 means
that the 1-edges leaving y0-nodes are redirected to lead to the same node as the
0-edge. Only the former y0-node can be eliminated. Hence, the π-ZBDD size
for ZMUXn|y0=0 and the given variable ordering equals 3n which is almost by
a factor of 3/2 larger than the π-ZBDD size for ZMUXn and the given variable
ordering.

Exercise 8.10. We start with π-ZBDDs.
1.) The computation of fv(a), a ∈ {0, 1}n, starts at v and follows the path
activated by a. Then fv(a) = 1 iff we reach the 1-sink and ai = 1 for all xi such
that we have not reached an xi-node.
2.) Each input a activates all ai-edges leaving xi-nodes, 1 ≤ i ≤ n. Then
fv(a) = 1 iff the unique activated path starting at v leads to the 1-sink and
ai = 1 for all xi such that this path does not contain an xi-node.
3.) The 0-sink represents the constant 0 and the 1-sink represents x1x2 · · ·xn.
An xi-node v represents f0 + xif1|xi=0 if f0 and f1 are represented at the 0-
successor resp. 1-successor of v (see Proposition 8.1.2).
Now we consider π-OFDDs.
1.) The computation of fv(a), a ∈ {0, 1}n, starts at v. At xi-nodes where ai = 0
the 0-edge is chosen. At xi-nodes where ai = 1 both outgoing edges are chosen.
If paths meet again, they are still considered as different paths. Then fv(a) is
equal to the EXOR-sum of the sink labels obtained.
2.) Each input a activates all 0-edges leaving xi-nodes where ai = 0 and both
edges leaving xi-nodes where ai = 1. Then fv(a) = 1 iff an odd number of
activated paths starting at v reaches the 1-sink.
3.) The c-sink represents the constant c. An xi-node v represents f0 ⊕ xif1 if
f0 and f1 are represented at the 0-successor resp. 1-successor of v.

Exercise 8.11. An FFDD has the same syntax as FBDDs and uses the seman-
tics of OFDDs (see the solution of Exercise 8.10). We claim that a complete
FBDD representing f represents τf as FFDD. Since ττf = f (Lemma 8.2.4),
this implies that a complete FFDD representing f represents τf as FBDD. This

55

implies that the minimal size of complete FBDDs representing f is equal to the
minimal size of complete FFDDs representing τf . We still have to prove the
claim. Let G be a complete FBDD and let a be an input with j ones. Let G′

be the FFDD isomorphic to G. The input a activates 2j paths in G′, since G′ is
complete. The paths activated by a in G′ are the same as the paths activated
in G by the 2j inputs b ≤ a. Hence, fG′(a) =

⊕

b≤a fG(b) = τfG(a) and the
FFDD G′ represents τfG.

Exercise 8.12. The outputs sn−1, . . . , s0 are of the same type. Hence, we only
discuss sn and sn−1.

The carry sn is a monotone function. Therefore, tn := τsn can only take
the value 1 if sn does. Let (a, b) = (an−1, . . . , a0, bn−1, . . . , b0) be an input such
that sn(a, b) = 1. This implies that there exists some i such that ai = bi = 1
and aj ⊕ bj = 1 for j > i. We count the number of inputs (a′, b′) such that
(a′, b′) ≤ (a, b) and sn(a, b) = 1. If aj = 1 (bj = 1) and j > i, it is necessary
that a′j = 1 (b′j = 1). If a′i = b′i = 1, then we may choose a′j ≤ aj and b′j ≤ bj

for j < i arbitrarily. The number of these inputs is odd iff aj = bj = 0 for
j < i. If a′i = b′i = 0, sn(a′, b′) = 0. If a′i = 1 and b′i = 0, we obtain the same
number of good inputs (a′, b′) as for the case a′i = 0 and b′i = 1. Hence, the
total number for both cases is even. Altogether, tn(a, b) = 1 iff there exists
some i such that ai = bi = 1, aj ⊕ bj = 1 for j > i, and aj = bj = 0 for j < i.
Let π1 = (xn−1, yn−1, . . . , x0, y0). After having tested yj we may have reached
the 0-sink, we may have seen only pairs with xk ⊕ yk = 1 or we may have seen
xk ⊕ yk = 1 for k > i, xi = yi = 1, and xk = yk = 0 for j ≤ k ≤ i − 1 and
some i. Hence, we have two xj−1-nodes and three yj−1-nodes if j − 1 > 0. On
the yj−1-level, we have to distinguish the two situations described above and
for the first situation the two possible xj−1-values. If xj−1 = 1 in the second
situation, we reach the 0-sink. Hence, the π1-OFDD size of sn equals 5n±O(1).
Let π2 = (x0, y0, . . . , xn−1, yn−1). After having tested yj we may have reached
the 0-sink, we may have seen only pairs with xk = yk = 0 or we may have seen
xk = yk = 0 for k < i, xi = yi = 1, and xk ⊕ yk = 1 for i + 1 ≤ k ≤ j and
some i. Hence, we have two xj+1-nodes and four yj+1-nodes. Here we have to
distinguish two situations and on the yj+1-level the possible values of xj+1. The
π2-OFDD size of sn equals 6n±O(1).

The sum bit sn−1 is not monotone. We distinguish three cases.
Case 1. an−1 = bn−1 = 1. Let z be the number of inputs (a′, b′) such that
(a′, b′) ≤ (a, b), a′n−1 = b′n−1 = 1, and sn−1(a

′, b′) = 1. Then z is also the
number of inputs (a′, b′) such that (a′, b′) ≤ (a, b), a′n−1 = b′n−1 = 0, and
sn−1(a

′, b′) = 1. Let z′ be the number of inputs (a′, b′) such that (a′, b′) ≤ (a, b),
a′n−1 ⊕ b′n−1 = 1, and sn−1(a

′, b′) = 1. Then z′ is even, since we have the
cases (a′n−1, b

′
n−1) = (1, 0) and (a′n−1, b

′
n−1) = (0, 1). Hence, the number of

inputs (a′, b′) ≤ (a, b) such that sn−1(a
′, b′) = 1 is even and tn−1(a, b) = 0 for

tn−1 := τsn−1.
Case 2. an−1 = bn−1 = 0. Then sn−1 is the carry bit of ADDn−1. We conclude
(see above) that tn−1(a, b) = 1 iff there exists some i such that ai = bi = 1,
aj ⊕ bj = 1 for i < j < n− 1 and aj = bj = 0 for j < i.

56

Case 3. an−1 ⊕ bn−1 = 1. Let r be the number of ones among aj , bj , j <
n − 1. Let z be the number of inputs (a′, b′) ≤ (a, b) such that (a′n−1, b

′
n−1) =

(an−1, bn−1) and sn−1(a
′, b′) = 1. Then the number of inputs (a′, b′) ≤ (a, b)

such that a′n−1 = b′n−1 = 0 and sn−1(a
′, b′) = 1 equals 2r − z. The reason is

that for each of the 2r choices of assignments to all aj , bj , j ≤ n − 1, either
(a′n−1, b

′
n−1) = (an−1, bn−1) or a′n−1 = b′n−1 = 0 leads to the output 1 (but not

both). Hence, there are 2r inputs (a′, b′) ≤ (a, b) such that sn−1(a
′, b′) = 1.

This implies that tn−1(a, b) = 1 iff ai = bi = 0 for i < n− 1.
Now we investigate the variable ordering π1 and π1-OBDDs for tn−1. If

xn−1 = yn−1 = 1, we reach the 0-sink. If xn−1 ⊕ yn−1 = 1, we have to check
whether xi = yi = 0 for all i < n−1 which leads to one xi-node and one yi-node.
If xn−1 = yn−1 = 0, we have two xi-nodes and three yi-nodes if i > 0. Among
them there are nodes checking whether the later variables all are 0. Hence, the
π1-OFDD size of si, i < n equals 5i ± O(1). Now we investigate the variable
ordering π2. We distinguish the same inputs as for sn and the last two variables
decide about the output. Hence, the π2-OFDD size of si, i < n, equals 6i±O(1).

If we consider shared OFDDs for all outputs, almost nothing can be gained
for the variable ordering π2, since si essentially depends on yi while sj , j < i,
does not essentially depend on yi. Already the description of the subfunctions
of tn and tn−1 (and similarly ti, i < n − 1) has shown that shared π1-OFDDs
for ADDn have linear size.

Exercise 8.13. We refer to the construction of the quasi-reduced OBDD G
representing 1cln,3 which is a quasi-reduced OFDD representing ⊕cln,3. We have
shown that the width is bounded by 2N + 3. It is sufficient to show that only
O(n) nodes are left after the application of the OFDD elimination rule. Hence,
we investigate G as OBDD and prove that enough nodes have the property that
the 1-edge leads to the 0-sink. We claim nothing for the node for the case that
we have not found any edge. We have at most N nodes where we have seen one
edge. Let us consider the xij-level. If xij = 1, we reach the 0-sink if the seen
edge is not adjacent to i or j. Hence, at most 2n− 4 of these nodes cannot be
eliminated by the OFDD elimination rule. We also have at most N nodes for
situations where we have seen two edges. If xij = 1, we reach the 0-sink if the
seen edges are not for some vertex k the {i, k}- and the {j, k}-edge. Hence, at
most n− 2 of these nodes cannot be eliminated by the OFDD elimination rule.
There are 2 more nodes. Altogether, the width of reduced OFDDs representing
⊕cln,3 is bounded above by 3n − 3 leading to an O(nN) = O(N 3/2) = O(n3)
bound on the OFDD size.

Exercise 8.15. We apply results from Section 10.5. We investigate w.l.o.g.
the lexicographical ordering of the inputs a = (a1, . . . , an) with respect to this
ordering of the input bits, i.e., a ≤lex b iff a = b or ai = 0, bi = 1 and aj = bj

for j < i.
Let G be the given π-OFDD which is w.l.o.g. reduced. Hence, we can decide

whether the function f represented by G is the constant 0. In that case there is
no satisfying input. Otherwise, we construct an EXOR-π-OBDD G′ represent-
ing f . This is done by adding for each inner node v an outgoing 1-edge which

57

reaches the 0-successor of v. We replace x1 by 1 and check whether f|x1=1 is
satisfiable. In the positive case, we look for the lexicographical largest satisfying
input for f|x1=1 defined on x2, . . . , xn. If the result is (a2, . . . , an), the final result
is (1, a2, . . . , an). In the negative case, we look for the lexicographical largest
satisfying input for f|x1=0 defined on x2, . . . , xn. If the result is (a2, . . . , an), the
final result is (0, a2, . . . , an). Replacement by constants is possible in linear time
and does not increase the number of nodes (Theorem 10.5.1.i). The edge size
always can be bounded by the square of the node size (if r edges with the same
label lead from v to w, they can be replaced by r mod 2 edges). The satisfiabil-
ity test can be performed by node minimization (Theorem 10.5.5) and the check
whether the result is the 0-sink. Altogether, we have to perform n satisfiability
tests on EXOR-π-OBDDs with not more nodes than the given OFDD. Hence,
the whole algorithm runs in polynomial time.

Exercise 8.16. Let n = 2k and let the variables be given by their ordering
π = (x0, y0, . . . , xk−1, yk−1, z0, . . . , zn−1). We define π-OFDDs Fn and Gn for
n = 4 by the following figures.

0 1 Fn

y0y0

x0

y1 y1 y1 y1

z1

z0

z3

z2

x1 x1

v0

v1

v3

v2

w0

w1

w2

w3

10 Gn

y1 y1

x1x1

y0

x0

z2

z3

z0

z1

It is obvious how Fn and Gn are defined in the general case. They represent fn

58

and gn resp. The π-OFDD size of fn and gn is linear. We apply the synthesis
algorithm described in the proof of Theorem 8.2.13 to the π-OFDDs Fn and Gn.
There are n2/4 node pairs (v, w) on the yk−1-level which are reachable from the
source of the product graph for the ⊕-synthesis. They have different node pairs
(vi, wj) as successors. These successors represent zi ⊕ zj . At most n of these
nodes represent the constant 0 leading to mergings or eliminations. Hence, the
π-OFDD of fn ⊕ gn is Ω(n2). It is even Θ(n2), since the upper bound follows
from Theorem 8.2.13.

Exercise 8.17. We know (see the proof of Theorem 8.2.14) that fN = ⊕cln,3

and gN = T 4,N have polynomial π-OFDD size for each variable ordering but
fN ∧ gN = 1cln,3 has even exponential FFDD size. Let s be a new variable
and let hN = (s ∧ fN) + (s ∧ gN). If s is the first variable, the 0-successor
has to represent gN and the 1-successor fN ⊕ gN which both have polynomial
π-OFDD size for each ordering of the remaining variables. But (∀s)hN = 1cln,3

has exponential FFDD size. Let h∗N = s ∧ fN . Then h∗N |s=gN
= 1cln,3 and we

obtain the claim for the operation replacement by functions.

Exercise 8.18. Yes, such an algorithm exists. Let G and H be the given π-
OFDDs. As in the solution of Exercise 8.15 we construct EXOR-π-OBDDs G′

and H ′ of the same node size representing the same functions. The ∧-synthesis of
G′ and H ′ leads in polynomial time to an EXOR-π-OBDD F ′ of size O(|G′|·|H ′|)
(Theorem 10.5.1.iv). Also the reduction is possible in polynomial time. We still
have to transform F ′ into a π-OFDD F representing the same function f . Let
F ∗ be the quasi-reduced π-OFDD representing f . Then |F ∗| ≤ (n + 1) · |F |.
It is sufficient if we construct F ∗ in polynomial time with respect to |F ′| and
|F ∗|. W.l.o.g. π = id and we construct F ∗ levelwise top-down. There is one
x1-node. Let us assume that the xi-level is constructed. Let it contain nodes
v1, . . . , vl representing fi,1, . . . , fi,l and let us assume that we have EXOR-π-
OBDDs Fi,1, . . . , Fi,l representing fi,1, . . . , fi,l resp. where |Fi,j | ≤ |F ′|. This is
in the beginning true for i = 1, l = 1 and F1,1 = F ′. The successors of vj have
to represent fi,j |xi=0 and fi,j |xi=0⊕fi,j |xi=1. The EXOR-π-OBDDs for fi,j |xi=0

and fi,j |xi=1 can be obtained by replacement by constants. Since xi is the top

level of the considered EXOR-π-OBDDs, this can be done by the operation
creation of linear combinations. It is important that we have one xi+1-node
representing fi,j |xi=0 and one xi+1-node representing fi,j |xi=1, all other nodes

are contained in Fi,j . Moreover, we can eliminate the xi-source of Fi,j . The ⊕-
synthesis of the two EXOR-π-OBDDs leads to an EXOR-π-OBDD representing
fi,j |xi=0 ⊕ fi,j |xi=1 whose size is bounded by |Fi,j |. This operation again is

the creation of linear combinations. We obtain EXOR-π-OBDDs representing
the 2l functions which have to be represented at the successors of v1, . . . , vl.
We perform pairwise equivalence checks (EXOR synthesis, node minimization
(Theorem 10.5.5), and the check whether the result is the 0-sink). Then we
know the number of nodes of the xi+1-level of F ∗ and how to direct the edges
between the xi-level and the xi+1-level. Moreover, we have EXOR-π-OBDDs
representing the functions on the xi+1-level, the size of each of them is bounded

59

by |F ′|. The number of considered EXOR-π-OBDDs is bounded by 2|F ∗|. Since
all operations on EXOR-π-OBDDs are possible in polynomial time, the size
of the EXOR-π-OBDDs is bounded by |F ′|, and the number of operations is
bounded by O(|F ∗|2), the whole algorithm runs in polynomial time.

Exercise 8.19. The first step is to add by the inverse elimination rule for the
given type of the xi-level xi-nodes such that each path from the source to a sink
passes through an xi-node. The set of functions which has to be represented
at the xi-level (and at all levels above the xi-level) does not change if dti is
changed. The direct successors of an xi-node representing g represent

- g|xi=0 and g|xi=1 (if dti = s),

- g|xi=0 and g|xi=0 ⊕ g|xi=1 (if dti = pRM),

- g|xi=1 and g|xi=0 ⊕ g|xi=1 (if dti = nRM).

Hence, a ⊕-synthesis step for each direct successor is sufficient to represent
g|xi=0⊕g|xi=1, g|xi=0 = (g|xi=0⊕g|xi=1)⊕g|xi=1, or g|xi=1 = (g|xi=0⊕g|xi=1)⊕
g|xi=0. In all cases the ⊕-synthesis on G1 and G2 runs in time O(|G1| · |G2|).
All the resulting nodes are nodes of the product graph of two disjoint copies
of the given dt-OKFDD G. Hence, the size of the dt′-OKFDD G′ is bounded
above by |G|2.

60

Chapter 9

Exercise 9.1. The proof of Theorem 3.1.4 can be used word-for-word for the
generalized case of MTBDDs. The same holds for the proof of Theorem 3.2.2
given as solution of Exercise 3.5.

Exercise 9.2. The terminal cases where v and w are sinks are obvious. We
list some additional terminal cases:

1.) Addition. One of the vertices is the 0-sink.

2.) Subtraction. The node w is the 0-sink.

3.) Multiplication. One of the vertices is the 0-sink or the 1-sink.

4.) Min/Max. One of the vertices is the (+∞)-sink or the (−∞)-sink. If
we additionally store the smallest and largest possible value, max(v) ≤
min(w) and max(w) ≤ min(v) are terminal cases.

Exercise 9.3. Let n = 2k. Let Ax,z be a 2n × n-matrix and Bz,y be an
n × 2n-matrix and let us use the variable ordering π = (z, x, y). The A-matrix
contains all 2n {0, 1}-vectors of length n in the canonical ordering. If we test
the z-variables and store the value of |z|, we obtain the output as x|z|. Hence,
Ax,z can be realized like a multiplexer in linear size O(n). The B-matrix is
the transposed of A and also can be represented in linear size. The C-matrix
contains the entries x0y0 + · · ·+ xn−1yn−1. If we test the x-variables before the
y-variables, the matrix C has a representation of exponential size.

Exercise 9.4. Let s0, . . . , sm−1 be the functions describing the bits of f . We
construct a π-MTBDD Gi representing si2

i from the π-OBDD representing si

by replacing the 1-sink by a 2i-sink. Afterwards, we combine G0, . . . , Gm−1 by
synthesis steps realizing integer addition. This causes an exponential blow-up
of the size (which cannot be avoided).

Exercise 9.5. An input a activates paths in a BMD in the same way as in
OFDDs. The output is the sum of the labels at the sinks reached by the different
paths. If we replace each sink by a sink with the negative value, also the output
is −r instead of r and we obtain a BMD representation of −f if the given BMD
represents f .

Exercise 9.6. We have seen in the proof of Theorem 9.3.2 that π-BMDs
representing c|z| + d for constant integers c and d and an n-bit number z only
need linear size. Let |Xi| = xi2

i + · · ·+ x02
0. Then it is shown in the proof of

Theorem 9.6.2 that

|Xn−1|2 = |Xn−2|2 + xn−1(2
2n−2 + 2n|Xn−2|).

Hence, we may start with an xn−1-node whose 0-successor represents |Xn−2|2
and whose 1-successor represents with O(n) nodes 2n|Xn−2| + 22n−2. Follow-
ing this approach inductively we obtain a π-BMD of size O(n2) representing
squaring for the ordering π = (xn−1, . . . , x0).

61

Exercise 9.7. Each input can activate at most 2n paths. Hence, each output
value is the sum of at most 2n sink labels (which may be used repeatedly).
The input consisting of zeros only activates only one path which has to reach a
1-sink. This sink alone can only lead to outputs up to 2n. Hence, the second
smallest sink label is at most 2n+1. These two sink labels alone can only lead
to output values not larger than 22n+1. Hence, there is a further sink label not
larger than 22n+2, a further one whose label is not larger than 23n+3, 24n+4,
In order to obtain the output value 22n−1, we need a sink label whose size is
at least 22n−1−n. Hence, we need at least s + 1 sinks where s is the smallest
number such that sn + s ≥ 2n − 1− n. Hence, s = Ω(2n/n) and the same lower
bound holds for the BMD size.

Exercise 9.8. We describe the six transformation matrices by the following
table.

type f(0) f(1)
1 c0 c1

2 c0 c1 − c0

3 c0 c0 + c1

4 c1 c1 − c0

5 c1 c0 + c1

6 c0 + c1 c1 − c0

We do not obtain an essentially different matrix if we interchange the roles of
f(0) and f(1) and/or negate some values. For the matrices we may interchange
the rows and may negate rows. Hence, each matrix represents 8 matrices which
are not essentially different, altogether 48 of the 81 possible matrices. The other
33 matrices are not regular. If the first row is (0, 0), all 9 possibilities for the
second row lead to a non-regular matrix. For the other 8 possibilities for the
first row, say (a11, a12), we have 3 possibilities to obtain a non-regular matrix
namely (0, 0), (a11, a12), and (−a11,−a12).

Exercise 9.9. Let f be a function represented at an xi-node v and let f0 =
f|xi=0 and f1 = f|xi=1. Depending on the type of the transformation matrix,
essentially the following pairs of functions are represented at the direct succes-
sors of v. We have chosen computations with integers avoiding rationals (e.g.,
f0 + f1 and f0 − f1 instead of (f0 + f1)/2 and (f0 − f1)/2).

type functions at the successors
1 f0 f1

2 f0 f1 + f0

3 f0 f1 − f0

4 f1 f0 − f1

5 f1 f0 + f1

6 f0 + f1 f0 − f1

62

There are simple linear operations to obtain each pair of functions from
any other one. These operations have to be performed. Linear operations are
supported by each of the representation types.

Exercise 9.10. Let us replace xi by c ∈ {0, 1}. We replace all edges leading to
xi-nodes by edges to their c-successors. If c = 1, we have to add the weight on
the 1-edge leaving the considered xi-node to the weight of the considered edge
to the xi-node. This procedure is obviously correct, but we may obtain weights
on 0-edges. Hence, we have to replace them bottom-up. If w is the weight on
the 0-edge leaving v, we replace this weight by 0, add the weight w to all edges
leading to v and subtract w from the weight of the 1-edge leaving v.

Exercise 9.11. A simultaneous DFS traversal reaches the following node pairs

w3

ADD

2c

w0

s = PAR

w2

w4

w1

c = T2,30

x

y

z

1

0

2

0

0

0

1

x

y y

z

1

0

y

z z

0

0

0

0

y

x

y y

z

0

1

−1
1

−1

x

v2

v0

v1

v3

vs

v4

1

1

2

1

0

with the following ”seen weight”: (v0, w0, 0), (v1, w1, 0), (v3, w4, 0), (v5, w4, 0),
(v5, w4, 1), (v4, w3, 1), (v5, w4, 1), (v5, w4, 2), (v2, w2, 1), (v4, w3, 1) already visited,
(v3, w4, 2) already visited. This leads to the following EVBDD. The 0-edge leav-

63

2c + s

x

z z

y

0

(v4, w3)

(v1, w1)

(v3, w4)

(v5, w4)

2

0

2

1 1

(v2, w2)

(v0, w0)

y

ing (v4, w3) has weight 1. This weight is given back to the incoming edges and
the weight 1 is subtracted from the weight on the 1-edge leaving (v4, w3) leading
to the weight 1. Hence, (v3, w4) and (v4, w3) are merged. The 0-edge leaving
(v2, w2) has the weight 1. This weight is given back to the incoming edge and
the 1-edge leaving (v2, w2) gets the new weight 1. Hence, (v1, w1) and (v2, w2)
can be merged leading to the canonical π-EVBDD representing 2c + s which is
isomorphic to the π-EVBDD representing ADD.

Exercise 9.12. Let π be an arbitrary variable ordering and let xk be the last
variable according to this ordering. The 2n−1 assignments to the other n − 1
variables lead to 2n−1 different numbers a. Such an assignment leads to the
subfunction (a + xk2k)2 = a2 + xk(2a2k + 22k). If a 6= a′, the difference of the
subfunctions equals 2(a − a′)2kxk + a2 − a′2 and is not a constant. Hence, we
obtain a lower bound of 2n−1 from Theorem 9.5.3.

Exercise 9.13. We may use the same ideas as for the solution of Exercise 9.12.

Here the subfunctions are 2(a+xk2k) and the difference for a and a′ equals

2xk2k

(2a − 2a′) which is not a constant if a 6= a′. Again we obtain a lower
bound of 2n−1 from Theorem 9.5.3.

Exercise 9.14. We construct a ∗BMD G1 representing |y|. This ∗BMD has
one yi-node whose 1-edge leads with the weight 2i to the unique sink which is
a 1-sink. The 0-edge has weight 1 and leads to the yi+1-node if i < n − 1. If
i = n − 1, it leads with weight 0 to the sink. We construct another ∗BMD
G2 representing |x| (we really do not need the x0-node). Except these nodes
we create one xi-node and one yi-node. The 0-edge leaving the xi-node has
weight 1 and reaches the yi-node and the 0-edge leaving the yi-node has weight
1 and reaches the xi+1-node, if i < n − 1, and it has weight 0 and reaches the
sink, if i = n − 1. The 1-edge leaving the xi-node reaches the yi-node of G1

and has weight 2i. The 1-edge leaving the yi-node reaches the xi+1-node of G2

and has weight 2i, if i < n − 1. If i = n − 1, it has weight 0 and reaches the

64

1-sink. This yn−1-node indeed can be eliminated leading to a ∗BMD size of
n + (n − 1) + 2n − 1 + 1 = 4n − 1. The case n = 3 is shown in the following
figure where the weights 1 are not described explicitly. This ∗BMD realizes the

2

2

0

0

0

2

4

2

4

4

1

y0

y1

x1

y2

x2x2

y1

x1

y0

x0

multiplication in the following way:

|x| · |y| = x0(y02
0 + · · ·+ yn−12

n−1)

+y0(x12
1 + · · ·+ xn−12

n−1)

+2x1(y12
1 + · · ·+ yn−12

n−1)

+2y1(x22
2 + · · ·+ xn−12

n−1)

+ · · ·
+2n−1xn−1 · 2n−1yn−1.

Exercise 9.15. W.l.o.g. π = id. We prove the claim by induction on n. For
n = 1 we have one of the functions ax1 + b, a, b ∈ R. This function can be
represented by an x1-node whose edges lead to a 1-sink. The weight on the
0-edge equals b and the weight on the 1-edge equals a. If a = b = 0, we can
eliminate the node and replace it by an edge with weight 0 to the sink. If a = 0
and b 6= 0, we introduce an edge with weight b to the x1-node whose outgoing
0-edge gets the weight 1. A similar procedure is possible if a 6= 0 and b = 0.

65

If a 6= 0 and b 6= 0 there is only one way to fulfil the restrictions. The missing
common weight is given to an edge leading to the x1-node.

For the induction step, we also argue with shared π-∗BMDs. We have a
canonical representation of f|x1=0 and f|x1=1−f|x1=0. We introduce an x1-node
v which is reached by an edge with weight 1. The 0-edge leaving v is identified
with the edge representing f|x1=0 and the 1-edge is identified with the edge
representing f|x1=1−f|x1=0. If an edge has weight 0, it points to the sink. If the
1-edge has the weight 0, we can eliminate v and obtain by induction hypothesis
a canonical representation. If the 0-edge has the weight 0, there is only one way
to replace the weight on the 1-edge by 1. The weight on the edge representing f
is multiplied by this weight. There is also a unique way to fulfil the restrictions
in the other cases. There is no possibility to change the weights in the sub-π-
∗BMDs. Otherwise, the representation of f|x1=0 and f|x1=1 − f|x1=0 would not
be canonical.

Exercise 9.16. The solution of this exercise is due to Enders (1995).
We only discuss complete ∗BMDs which also are canonical. The elimination

rule eliminates nodes whose 0-edge has the weight 1 and whose 1-edge has the
weight 0 (and, therefore, leads to the sink). This allows the application of the
reverse elimination rule. Complete ∗BMDs G on n variables have 2n paths and,
similarly to OFDDs and BMDs, we have to consider the BDD computation
paths for all b ≤ a in order to evaluate G on input a. More precisely, the
contribution of a path is the product of all the edge weights on the path and the
value of G for a is the sum of the contributions of the computation paths for all
b ≤ a. We may use another interpretation of a ∗BMD. The Shannon type ∗BMD
evaluation rule considers for the input a only the path activated by a, namely
the path from the source to the sink containing ai-edges leaving xi-nodes and
the output is the contribution of this path. Let f be the function represented
by G as ∗BMD and let f∗ be the function represented by G using the Shannon
type ∗BMD evaluation rule. We define the function τ ∗ on the set of functions
g : {0, 1}n → R by τ∗(f∗) = f . Then we can generalize Lemma 8.2.4.i. By
definition

τ∗(g)(a) =
∑

b≤a

g(b)

and

τ∗(g1 + g2)(a) =
∑

b≤a

(g1(b) + g2(b)) =
∑

b≤a

g1(b) +
∑

b≤a

g2(b) = τ∗(g1) + τ∗(g2).

Moreover, τ∗ is one-to-one. Let b be the smallest input (w.r.t. to ≤) such that
g1(b) 6= g2(b). Then τ∗(g1)(b) 6= τ∗(g2)(b).

Hence, we can solve the problem by investigating ∗BMDs with the Shannon
type ∗BMD evaluation rule, S∗BMDs for short. It is sufficient to prove that
addition may lead to an exponential blow-up of the size of S∗BMDs.

Let f(a) = 1 for all a ∈ {0, 1}n. The size of complete S∗BMDs for f
obviously is linear. Let p1, . . . , pn be the n smallest primes and let

66

g(a) =
∏

1≤i≤n

pai
i . Also the size of complete S∗BMDs for g is linear. We need

one xi-node whose outgoing 0-edge has the weight 1 and whose outgoing 1-edge
has the weight pi and both edges lead to the xi+1-node, if i < n, and to the
sink, if i = n. Let h = f + g, i.e.,

h(a) =
∏

1≤i≤n

pai
i + 1.

Let a′ = (a′1, . . . , a
′
n−1) and b′ = (b′1, . . . , b

′
n−1) be two different partial inputs.

If the partial computation paths for a′ and b′ lead to the same xn-node with
weight m0 on the 0-edge and weight m1 on the 1-edge, then we can argue as
follows. Let w(a′) be the contribution of the a′-path, similarly w(b′). Then
w.l.o.g. m0 = 1 and

h(a′, 0) = w(a′) =
∏

1≤i≤n−1

p
a′i
i + 1,

h(a′, 1) = w(a′)m1 =
∏

1≤i≤n−1

p
a′i
i pn + 1,

h(b′, 0) = w(b′) =
∏

1≤i≤n−1

p
b′i
i + 1, and

h(b′, 1) = w(b′)m1 =
∏

1≤i≤n−1

p
b′i
i pn + 1.

Hence, h(a′, 0)/h(a′, 1) = h(b′, 0)/h(b′, 1) and for

c =
∏

1≤i≤n−1

p
a′i
i and d =

∏

1≤i≤n−1

pbi′

i we get c 6= d (since a′ 6= b′ and p1, . . . , pn−1

are different primes) and
c + 1

cpn + 1
=

d + 1

dpn + 1

which is equivalent to

cdpn + dp1 + c + 1 = cdpn + cpn + d + 1

or

d(pn − 1) = c(pn − 1)

and

c = d.

This contradiction proves the existence of 2n−1 xn-nodes.

67

Exercise 9.17. Let v be an xi-node in a ∗BMD G representing f = w0f0 +
xiw1f1 where f0 and f1 are the functions represented at the 0-successor resp.
1-successor. If we replace xi by wxi + c, we have to represent

f ′ = w0f0 + (wxi + c)w1f1 = w0f0 + cw1f1 + xiww1f1.

We construct a new node v′1 which has the same label, the same weights on the
outgoing edges and the same direct successors as v1, the 1-successor of v. The
weight on the edge from v to v1 is replaced by ww1 and we create an edge to the
node v′1 with weight cw1. Then we apply a synthesis algorithm for the addition
of the functions represented at the 0-edge leaving v (w0f0) and at the edge to
v′1 (cw1f1). The resulting edge is the new 0-edge leaving v. This is correct,
since it represents w0f0 + cw1f1. The same procedure is applied to all xi-nodes.
Afterwards, the usual procedure to obtain a canonical representation has to be
applied.

Exercise 9.18. The procedure presented as solution of Exercise 9.17 shows
that the affine replacement of the variable can be performed by si applications
of a synthesis algorithm for addition where si is the number of xi-nodes . Hence,
the size blow-up can be bounded knowing the size blow-up for addition. Let the
source of a ∗BMD be labeled by xi. Let w = 0 and c = 1, i.e., xi is replaced
by the constant 1. The new function equals w0f0 + w1f1 and is the addition
of the functions represented at the edges leaving the source. Hence, each size
blow-up caused by an addition can be caused also by the affine replacement of
a variable. Hence, the result is contained in the solution of Exercise 9.16.

68

Chapter 10

Exercise 10.1. The basis {NOT, OR} is polynomially related to {AND, OR}.
An AND-node can be replaced by an OR-node where all incoming and outgoing
edges get an additional NOT-gate. By de Morgan laws we obtain the same
functions. Since even {AND, OR}-OBDDs are polynomially related to Boolean
circuits (Proposition 10.1.2), the basis {NOT, OR} cannot be more powerful.

The basis {→} also is polynomially equivalent to {AND, OR}. It is sufficient
(see the first part of the solution of this exercise) to show that we can simulate
NOT-and OR-nodes. In general f → g = f + fg. Therefore, f → 0 = f . To
simulate an OR-node representing f + g, we use a NOT-node to represent f .
Then

f → g = f + fg = f + g.

Exercise 10.2. Let T be an {AND,OR}-decision tree with l leaves labeled by
constants and r inner nodes labeled by variables. Then we obtain a B2-formula
with 2r + l leaves. This follows easily by induction on the number of inner
nodes, since an AND- or OR-node with successors representing f0 and f1 can
be simulated by f0 ∧ f1 and f0 + f1 resp. and an xi-node can be simulated by
(xi ∧ f0) + (xi ∧ f1).

A B2-formula can be simulated by an {AND, OR, NOT}-formula whose size
is only polynomially larger (see Wegener (1987)). Applying de Morgan laws
starting at the root of the formula, we obtain a formula with the same number
of leaves where {NOT}-nodes only have leaves as predecessor. If we allow leaves
labeled by literals, we get an {AND, OR}-formula. Now it is sufficient to replace
the leaves which only can represent a constant or a positive or a negative literal
by a decision tree with one inner node.

Exercise 10.3. The formula size of the majority function MAJn is polynomial
(see L.G.Valiant (1984). Short monotone formulae for the majority function.
Journal of Algorithms 5,363-366). The function MAJn has

(

n
dn/2e

)

prime impli-

cants of length dn/2e and
(

n
bn/2c+1

)

prime clauses of length bn/2c + 1. Since

MAJn is monotone, we can conclude that each DNF for MAJn contains at least
(

n
dn/2e

)

monomials and each CNF for MAJn contains at least
(

n
bn/2c+1

)

clauses.

Hence, by Theorem 10.1.4 and Theorem 10.1.5, MAJn has exponential OR-DT
size and AND-DT size. For EXOR-DTs, we also apply Theorem 10.1.5. An
EXORNF representing MAJn with s monomials leads to a circuit for MAJn

which has depth 2 if we allow unbounded fan-in AND- and EXOR-gates. The
first level contains s AND-gates realizing the monomials (we assume that the
literals are given for free). The second level contains one EXOR-gate com-
bining the s monomials. Razborov has shown in 1986, that unbounded fan-in
{AND, EXOR}-circuits realizing MAJn in constant depth need exponential size
(for a proof of the result see R. Smolensky (1987). Algebraic methods in the
theory of lower bounds for Boolean circuit complexity. 19.STOC, 77-82).

Exercise 10.6. The function EQ∗
n is defined in Definition 10.3.5. We describe

69

EQ∗
n as conjunction of the following n2 functions fij , 1 ≤ i, j ≤ n. Let

fij(a, x, b, y) = 1 iff xi = yj or ¬(ai = 1, bj = 1,
∑

1≤k≤i

ak =
∑

1≤k≤j

bk,
∑

1≤k≤n

ak =
∑

1≤k≤n

bk).

If EQ∗
n(a, x, b, y) = 0, a1 + · · · + an 6= b1 + · · · + bn or there is some pair

(i, j) such that a1 + · · · + ai = b1 + · · · + bj , ai = 1, bj = 1 but xi 6= yj . Then
fij(a, x, b, y) = 0. If EQ∗

n(a, x, b, y) = 1, we can conclude that a1 + · · · + an =
b1 + · · · + bn and for each pair (i, j) that a1 + · · · + ai = b1 + · · · + bj , ai = 1,
bj = 1 implies xi = yj and fij(a, x, b, y) = 1. Let π be an arbitrary variable
ordering. In order to realize fij it is sufficient to store the values of xi, yj , ai,
bj , the partial sums of all tested ak and of all tested ak where 1 ≤ k ≤ i, and
the partial sums of all tested bk and of all tested bk where 1 ≤ k ≤ j. Hence, a
width of 16(n + 1)4 is sufficient which implies a π-OBDD size of O(n5) for fij

and an AND-π-OBDD size of O(n7) for EQ∗
n.

Exercise 10.7. The function IP∗
n is defined in Definition 10.3.5. We describe

IP∗
n as EXOR sum of the following n2 functions gij , 1 ≤ i, j ≤ n. Let

gij(a, x, b, y) = 1 iff xi = yj = 1, ai = 1, bj = 1,
∑

1≤k≤i

ak =
∑

1≤k≤j

bk, and
∑

1≤k≤n

ak =
∑

1≤k≤n

bk.

If IP∗
n(a, x, b, y) = 1, the number of pairs (i, j) such that gij(a, x, b, y) = 1 is

odd and vice versa. The estimation of the π-OBDD size of gij is similar to the
estimation of the π-OBDD size of fij in the solution of Exercise 10.6.

Exercise 10.8. First, we investigate fn. Let M0, . . . , Mk−1 denote the k s× s-
matrices and let gj , 0 ≤ j ≤ k− 1, be defined on Mj . The function gj takes the
value 1 iff at least ds/2e rows contain at least ds/2e ones each.

Our first claim is a lower bound of size 2ds/2e2−1 on the FBDD size of fn.
It is sufficient to prove that fn is (ds/2e2 − 1)-mixed. After having tested
ds/2e2 − 1 variables, we have not seen ds/2e variables in each of ds/2e rows
of some matrix. Hence, for two different assignments a and b to ds/2e2 − 1
variables where ai 6= bi, and i = (ik−1, . . . , i0) we can assign values to all further
variables such that gi(a

∗) = gi(b
∗) = ij for the common extensions of a and b

resp. Then fn(a∗) = ai 6= bi = fn(b∗).
The OR-OBDD representing fn starts with an OR-node with n outgoing

edges. The ith edge, i = (ik−1, . . . , i0), corresponds to the guess that gj(Mj) =
ij and xi = 1. We have to verify that this guess is correct. We test the variables
in the order M0, . . . , Mk−1 and the variables in each matrix rowwise. The value
of gj can be computed in size O(s4). Hence, the OR-OBDD size of fn is bounded
by O(s4kn). The same holds for the OR-OBDD size of fn and, therefore, for
the AND-OBDD size of fn. The only difference is that we check whether xi = 0.

70

In order to obtain circuit representations we use the same representation as
for the OR-OBDD representation namely

fn(x) =
∨

i=(ik−1,...,i0)∈{0,1}k

xi ∧
∧

0≤j≤k−1

gj(Mj)
ij

Here, we use the notation that a1 = a and a0 = a.
Each function on s variables and, therefore, also MAJs and MAJs can be

represented by DNFs and CNFs of size 2O(s). Since gj is a majority of majorities,
we can combine a CNF and a DNF to obtain an OR-AND-AND-OR- and also
an OR-AND-OR-circuit of size 2O(s) representing gj(Mj)

ij . The crucial fact
is that the following conjunction of all gj(Mj)

ij and xi only has fan-in k + 1.
Using the law of distributivity we replace the last two levels of type OR-AND
by an AND-OR representation whose size can be bounded by 2O(sk). Hence, we
obtain for fn an OR-AND-AND-OR-OR representation of size 2O(sk) which can
be replaced by an OR-AND-OR representation by merging neighbored levels of
the same type. The same approach works for fn leading to an AND-OR-AND
representation of size 2O(sk) for fn.

Let f∗n be defined on N = d2(n log n)1/2e variables and let f∗n realize fn

on the first n variables. All the complexity results for fn also hold for f∗n.
We have to consider the bounds with respect to the number of variables N .
Since s = b(n/ log n)1/2c, s2 = Ω(n/ log n), and the FBDD lower bound is

2Ω(n/ log n) = NΩ(n1/2/ log3/2 n) = NΩ(log N/(log log N)O(1)) which grows faster than
any polynomial in N . The polynomial upper bounds on the OR-OBDD and
AND-OBDD size of fn lead to polylogarithmic upper bounds for f ∗n. The upper

bounds for depth-3 circuits are 2O(sk) = 2O((n log n)1/2) and, therefore, polyno-
mial upper bounds with respect to N .

Exercise 10.9. We start with an AND-node with k outgoing edges where the
dth edge leads to an OBDD Gd representing Hd(X), 1 ≤ d ≤ k. The OBDD
Gd uses the variable ordering πd where the groups of variables with the same
value of id are tested blockwise. The parity of all xi1,... ,in

where id = i can be
computed easily and the number (modq) of parities with value 1 is stored. The
size of the AND-FBDD is O(kqN) = O(kN), since q is a constant.

Exercise 10.10. We use the same approach as in the proof of Theorem 10.3.6
but we do not assume that k is a constant. Then we obtain m = bn/22kc
x-variables and m y-variables such that the number of layers with respect to
these variables is bounded above by kn + 1. We give the chosen m x-variables
to Alice, the chosen y-variables to Bob, and replace the a- and b-variables in
such a way by constants that we have to realize the function EQm resp. IPm

on the chosen variables. A nondeterministic oblivious BDD G for EQ∗
n and IP∗

n

implies the existance of a nondeterministic protocol of length (4k − 1)dlog |G|e
for EQm or IPm resp. In those cases where the nondeterministic communication
complexity is bounded by Ω(m) (see Theorem 10.3.9 and the following remarks)
we can conclude that

(4k + 1) log |G| = Ω(n/22k)

71

or
|G| = 2Ω(n/22k)−2 log k−1.

This is exponential as long as k ≤ (1
2 − ε) log n and grows superpolynomially

if k = 1
2 log n − ω(log log n). Hence, we obtain non-polynomial lower bounds if

k ≤ 1
2 log n− ω(log log n).

Exercise 10.11. We claim that the OR-FBDD size of excln is bounded below
by n−2(

(

n
dn/2e

)

= 2n−O(log n) = 2Ω(N1/2). We can almost copy the proof of

Theorem 6.2.6, since that proof argues only with inputs a ∈ excl−1
n (1) and the

computation path for a. For OR-OBDDs, we fix for each a ∈ excl−1
n (1) one path

from the source to the 1-sink activated by a. Then the proof of Theorem 6.2.6
works.

Exercise 10.13. For HWBn, we define wi, 0 ≤ i ≤ n, by wi(x) = 1 iff
x1 + · · · + xn = i. We choose an arbitrary variable ordering. The window
functions are symmetric and the OBDD size of wi is O(n2). The function
fi = HWBn ∧ wi = xiwi computes 1 iff x1 + · · · + xn = i and xi = 1. Hence,
the OBDD size of fi equals O(n2).

For ISAn, we define wij , 0 ≤ i, j ≤ n− 1, by wij(x, y) = 1 iff (yk−1, . . . , y0)
is the binary representation of j and (xj , . . . , xj+k−1) (the indices are taken
mod n) is the binary representation of i. Then wij is a monomial on 2k variables
and its π-OBDD size equals O(k) for arbitrary π. Moreover, fij = ISAn∧wij =
xi ∧ wij and also has π-OBDD size O(k).

For WSn, we define wi, 2 ≤ i ≤ n, by wi(x) = 1 iff the sum of all jxj mod p
equals i and we define w1(x) = 1 iff the sum of all jxj mod p 6∈ {2, . . . , n}.
The width of π-OBDDs representing wi is bounded by p and, therefore, the size
is bounded by O(np) = O(n2). Moreover, fi = WSn ∧ wi = xi ∧ wi and its
π-OBDD size also is bounded by O(n2).

For PJk,n, we work with n2k+1 window functions, one for each of the possible
paths of length 2k + 1. The window functions are monomials (indeed some are
the constant 0 and can be omitted) and have a π-OBDD size of O(k log n) =
O(log n). The corresponding part has to check whether the window function
has the value 1 and whether the color of the last vertex of the path equals 1.

Exercise 10.14. Let wi, 0 ≤ i ≤ n − 1, iff (gk−1(Mk−1), . . . , g0(M0)) is the
binary representation of i. We choose a variable ordering π whose first variables
of Mk−1 are tested rowwise, then the variables of Mk−2, and so on. We have
seen in the solution of Exercise 10.7 that the π-OBDD size of wi is bounded by
O(s4k). Moreover, fn ∧ wi = xi ∧ wi also can be represented in size O(s4k).

Exercise 10.15. The (k, w, π)-PBDDs start with an OR-node leading to πj-
OBDDs Gj , 1 ≤ j ≤ k, representing wj (if we like to represent the constant 1) or
xi∧wj (if we like to represent the variable xi). If the window functions are quite
complicated, the simple functions used in the beginning of a synthesis process
based on a circuit representation have already complicated representations. The
constant 0 is always represented by OBDDs representing 0.

72

Exercise 10.16. It is not known how to generalize the technique of the proof
of Theorem 6.2.13. A lower bound proof is contained on the pages 497–499
of the paper B.Bollig and I.Wegener (1999). Complexity theoretical results on
partitioned (nondeterministic) binary decision diagrams. Theory of Computing
Systems 32, 487–503.

Exercise 10.17. In Lemma 10.4.10, it is shown that Pk,n can be represented
in size O(2kk3nk) by PBDDs with k parts. The FBDD and the 2-OBDD start
with a complete binary tree of the s-variables. The FBDD may continue, if
|s| = i, as the PBDD in the ith part after the test whether |s| = i. Hence, the
same upper bound as for the k-PBDDs holds. The 2-OBDD uses the following
variable ordering: s-variables, z-variables, x0,·,·-variables, x1,·,·-variables, . . . ,
xk−1,·,·-variables, c-variables. The FBDD constructed above can be interpreted
as 2-OBDD. The s-variables are only tested in the beginning. The ith part
uses the variable ordering (z, xi, xi+1, . . . , xk−1, x0, . . . , xi−1, c) where we use
the obvious abbreviations. The test of (z, xi, xi+1, . . . , xk−1) belongs to the top
OBDD and the test of (x0, . . . , xi−1, c) to the bottom OBDD.

Each 2-OBDD G (and even k∗-OBDD, if k∗ = O(1)) of polynomial size can
be simulated by a polynomial-size EXOR-OBDD. We apply the approach of
the satisfiability test for k∗-OBDDs (see Theorem 7.3.3). We obtain at most
|G|k∗−1 OBDDs with the same variable ordering as G, each of size O(|G|k∗) such
that the function f represented by G is the disjunction of the |G|k∗−1 functions
represented by the constructed OBDDs. Morover, at most one of these functions
can compute 1 for a given input a. Hence, we obtain an EXOR-OBDD for f
starting with an EXOR-node leading to the at most |G|k∗−1 OBDDs. The
total size is bounded by O(|G|2k∗−1). In our case, k∗ = 2 and we obtain the
size bound O((2kk3nk)3) = O(23kk9n3k). All the bounds are polynomial for
constant k.

Exercise 10.18. The solution of this exercise is contained in that part of the
solution of Exercise 10.17 where EXOR-OBDDs are considered.

Exercise 10.19. It is mentioned in Section 8.2 that the SAT-COUNT prob-
lem is #P-complete for OFDDs. This result has been proved by Werchner,
Harich, Drechsler, and Becker (1995). An OFDD G can be transformed in lin-
ear time to an EXOR-OBDD representing the same function f as G. Hence,
the SAT-COUNT problem for EXOR-OBDDs is #P-hard. The problem is even
#P-complete. To prove that it is contained in #P we guess an input a and
compute f(a) in polynomial time by evaluating G on a. We accept iff f(a) = 1.
This nondeterministic Turing machine runs in time O(|G|+n) and has |f−1(1)|
accepting computation paths.

Exercise 10.20. W.l.o.g. π = id. The algorithm applies the node min-
imization procedure (see Theorem 10.5.5) and constructs the node minimal
EXOR-π-OBDD G′ which represents the same function f as the given EXOR-
π-OBDD G. Then we check whether G′ contains an xi-node and claim that
f essentially depends on xi iff G′ contains an xi-node. The run time of the

73

algorithm is dominated by the time O(n · |V (G)|3) for the node minimiza-
tion. The correctness follows from Theorem 10.5.4. We have to prove that
dim(Vf,i) = dim(Vf,i+1). We remember that Vf,k is the vector space spanned
by the subfunctions f|x1=a1,... ,xm=am

where k − 1 ≤ m ≤ n. Hence, comparing
Vf,i and Vf,i+1 it follows that Vf,i+1 ⊆ Vf,i and that for Vf,i we have additionally
to consider the functions f|x1=a1,... ,xi−1=ai−1

. If f does not essentially depend on
xi, f|x1=a1,... ,xi−1=ai−1

= f|x1=a1,... ,xi−1=ai−1,xi=0 and these functions are also
considered for Vf,i+1. Hence, Vf,i+1 = Vf,i. Since Vf,i+1 = Vf,i, the node min-
imal EXOR-π-OBDD G′ representing f does not contain an xi-node implying
that f does not essentially depend on xi.

Exercise 10.21. We consider a random variable ordering and give the first n
variables to Alice and the other n variables to Bob. It has been shown in the
proof of Theorem 5.3.3 that with a probability exponentially close to 1 there
are at least 0.4n singletons, i.e., indices i such that Alice gets xi and Bob gets
yi or vice versa. If j is not a singleton, we fix xj = yj = 0. Then we are left
with a function EQk where k ≥ 0.4n with high probability. Theorem 10.3.4
implies that the EXOR-communication complexity is in these cases bounded
below by k. This leads to a lower bound of 2k on the EXOR-π-OBDD size. For
variable orderings π′ like x1, y1, . . . , xn, yn even the π′-OBDD size of EQn is
linear. Hence, EQn is almost ugly for EXOR-OBDDs.

74

Chapter 11

Exercise 11.1. By Lemma 11.1.2, it is sufficient to consider complete F-FBDDs.
Then for x = (x1, . . . , xn), y = (y1, . . . , yn), Ic(b) = {i | bi = c}

(f ∧ g)F (x, y) =
∑

a∈f−1(1),b∈g−1(1)

∏

i∈I0(a)

(1− xi)
∏

i∈I0(b)

(1− yi)
∏

i∈I1(a)

xi

∏

i∈I1(b)

yi

=
(

∑

a∈f−1(1)

∏

i∈I0(a)

(1− xi)
∏

i∈I1(a)

xi

)

·
(

∑

b∈g−1(1)

∏

i∈I0(b)

(1− yi)
∏

i∈I1(b)

yi

)

= fF (x) · gF (y).

The signature for random inputs is a random variable. The expected signature
for f∧g is the product of the expected signatures of f and g, since the choices of
x and y are independent and E(X · Y) = E(X) ·E(Y) for independent random
variables.

Exercise 11.2. W.l.o.g. π = id. We remember that, by our definition, each
probabilistic variable is read on each computation path at most once. Let
z1, . . . , zr be the probabilistic variables. For each zj-node v let i(v) be the
largest i such that a path from the source to v passes through an xi-node. If no
path from the source to v contains a decision node, i(v) = 0. Let Bi be the set
of all probabilistic nodes v where i(v) = i. We consider the subgraph of G on
the node set Bi. Let Bi,1 be the set of sources and let Bi,j be the set of nodes
v such that the longest path from Bi,1 to v has the length j − 1. By the read-
once property of the probabilistic variables, Bi,j 6= ∅ only if j ≤ r. The new
probabilistic variables are denoted by zi,j , 0 ≤ i ≤ n, 1 ≤ j ≤ r. A probabilistic
node v where i = i(v) and v ∈ Bi,j is relabeled by zi,j . The new randomized
OBDD G′ is graph theoretically isomorphic to G and G′ is ordered with respect
to z0,1, . . . , z0,r, x1, z1,1, . . . , z1,r, x2, z2,1, . . . , z2,r, . . . , xn−1, zn−1,1, . . . , zn−1,r,
xn, zn,1, . . . , zn,r. The probability to choose a computation path with k proba-
bilistic nodes equals 2−k for G and G′, since the probabilistic variables are read
once and, therefore, the random decisions are independent. This leads to the
same acceptance and the same rejection probability.

Exercise 11.3. The new model is a generalization of the old one. If not all
inner nodes have the same number of outgoing edges, we have to measure the
size by the number of edges. A randomized node with 2k outgoing edges can
be simulated by a complete binary randomized tree of depth k with 2k+1 − 1
edges. This does not have any real consequences. But we may have randomized
nodes with r outgoing edges where r is not a power of 2, e.g., r = 3. Such
nodes cannot be simulated exactly in the old model, since there it is impossible
to obtain probabilities like 1/3. Using randomized binary trees of depth k
we can guarantee an error probability of 2−k compared with the given node.
This procedure needs trees of non-polynomial size if we perform it for each
randomized node in order to guarantee a small increase of the error probability.
With the same proof we can prove the generalization of Theorem 11.4.2 to the

75

new model. This leads to a polynomial increase of the size and an increase by
an additive constant of the error probability. Hence, the new model has more
freedom but, if we allow a small increase of the error probability, we cannot
represent more functions in polynomial size. Small increase means ε(n) where
ε(n)−1 is polynomially bounded. Hence, there may be differences only for the
PP-model. Proposition 11.5.11 contains the result MS ∈ BPP1/3+ε(n)-FBDD
as long as log(ε(n)−1) is polynomially bounded. A careful analysis shows that
MS ∈ BPP1/3-FBDD if we are allowed to start with a randomized node with
three outgoing edges.

Exercise 11.4. We claim that Theorem 11.3.5 holds for randomized s-oblivious
BDDs Gn and not only for randomized π-OBDDs. If the randomized nodes are
labeled by different probabilistic variables and different copies of Gn get differ-
ent probabilistic variables, we obtain s′-oblivious BDDs where s′ also contains
all probabilistic variables. The proof of Theorem 11.3.5 is based only on the
fact that π-OBDDs and π-MTBDDs allow efficient synthesis algorithms. The
synthesis algorithm for s-oblivious BDDs (see Theorem 7.3.5) is a π-OBDD syn-
thesis algorithm and can be generalized to s-oblivious MTBDDs. Hence, the
claim follows in the same way as Theorem 11.3.5.

Exercise 11.5. Theorem 11.8.7 contains the result that probability amplifi-
cation is not possible for FBDDs. In particular, MS ∈ coRP1/2-FBDD and
MS ∈ BPP1/3+ε-FBDD but MS 6∈ coRP1/3−δ-FBDD and MS 6∈ BPP1/4−δ-
FBDD. The FBDD G′ proving that MS ∈ coRP1/2-FBDD has a single ran-
domized node at the source and the 0-edge leads to an OBDD with a rowwise
variable ordering π0 while the 1-edge leads to an OBDD with a columnwise
variable ordering π1. It is easy to obtain a graph ordering G1 for one probabilis-
tic variable y1 and all variables of MSn such that the considered randomized
FBDD G′ is a G1-FBDD. Let G′′ be a copy of G′ with the new probabilistic
variable y2 instead of y1. Then G′′ is a G2-FBDD where G2 is the copy of G1

where y1 is replaced by y2. We need a graph ordering G on y1, y2, and the vari-
ables of MSn such that G′ and G′′ are G-FBDDs. Then we have to start with
y1 and y2. The most general case is a complete binary tree. If y1 = y2 = 0, the
variables of MSn can be ordered according to π0 and, if y1 = y2 = 1, according
to π1. If y1 = 0 and y2 = 1 (or vice versa), there is no graph ordering such
that G′ and G′′ are ”represented”. We need a rowwise ordering for G′ and a
columnwise ordering for G′′. Hence, the two copies cannot be considered as G-
FBDDs for the same FBDD. This is different to π-OBDDs or s-oblivious BDDs
where the different copies of the same probabilistic variable can be arranged
in an arbitrary order. If the copies have different values, this does not cause
difficulties, since the remaining variables are always ordered in the same way.

Exercise 11.7. We use the variable ordering ak−1, . . . , a0, x0, . . . , xn−1, y0, . . . ,
yn−1 and start with a complete binary tree on the a-variables. If the vector a is
known, we have to perform an equality test of x and y(a). It is shown in Propo-
sition 11.5.1 that the equality test of two vectors is contained in coRPε(n)-π-
OBDD for each variable ordering π as long as ε(n)−1 is polynomially bounded.

76

Hence, the chosen variable ordering is appropriate for the equality test of x and
y(a). Altogether, SEQn ∈ coRPε(n)-OBDD as long as ε(n)−1 is polynomially
bounded. Here the variable ordering cannot be chosen arbitrarily but it is suffi-
cient that all a-variables are tested in the beginning. The size of the randomized
OBDD is O(n4ε(n)−2 log n) (compare Proposition 11.5.1).

Exercise 11.8. We use the fingerprinting technique and choose s as the smallest
power of 2 which is at least n2ε(n)−1. We start with a complete binary tree
of depth log s consisting of randomized nodes only. This is interpreted as the
random choice of one of the s smallest primes. Let p be the chosen prime.
We use a rowwise variable ordering starting with the first row, followed by the
second row and so on. Let the row vectors be denoted by x1, . . . , xn. First,
we compute |x1| mod p and then |x2| mod p. If |x1| ≡ |x2| mod p, we accept.
Otherwise, we forget |x1| mod p and compute |x3| mod p. If |x2| ≡ |x3| mod p,
we accept. Otherwise, we forget |x2| mod p and compute |x4| mod p and so on.
If we have not accepted after the computation of |xn| mod p, we reject. The
width of each sub-OBDD is bounded by p2 = O(n4ε(n)−2 log2 n), the depth is
bounded by n2 and we have O(n2ε(n)−1) sub-OBDDs leading to a total size of
O(n8ε(n)−3 log2 n) which is polynomially bounded, since ε(n)−1 is polynomially
bounded. If EARn(X) = 1, we have |xi| = |xi+1| for some i. These inputs
are accepted by all sub-OBDDs. If EARn(X) = 0, we have |xi| 6= |xi+1|,
1 ≤ i ≤ n − 1, and for each i there are at most n primes p such that |xi| ≡
|xi+1| mod p. Hence, the number of primes p leading to |xi| ≡ |xi+1| mod p for
some i is smaller than n2. Hence, the error probability is bounded above by
n2/(n2ε(n)−1) = ε(n).

Exercise 11.9. We claim that the matrix storage access function MSAn is

(s− 1)-mixed leading to a lower bound of 2s−1 = 2Ω((n/ log n)1/2) for the FBDD
size. Let b and c be different assignments to the same set of s − 1 variables.
Let bi 6= ci. For each matrix Mj , at most s − 1 variables are tested. Hence,
there is no row where all variables are known to be equal to 1 and there is a row
without tested variable. Let aj = ROWs(Mj). We can choose an assignment to
the remaining n−(s−1) variables which ensures that |a| = i. Then MSAn(b∗) =
bi 6= ci = MSAn(c∗) for the common extensions b∗ and c∗ of b and c resp.

For an OR-OBDD we choose a variable ordering where the matrices are
tested blockwise and each matrix rowwise. We start with a nondeterministic
node with n outgoing edges. The ith edge leads to an OBDD checking whether
|a| = i and xi = 1. This is possible with linear size O(n2). It is obvious that
this is a nondeterministic representation of MSAn. If we check whether |a| = i
and xi = 0, we obtain a polynomial-size OR-OBDD representing MSAn. This
leads to a polynomial-size AND-OBDD representing MSAn.

Exercise 11.10. Let l = dlog ke + 1. The FBDD starts with a randomized
node leading to G1 and G2.

In G1, we want to compute the correct output if x|a| is contained in M0, . . . ,
Mk−l−1 or belongs to the remaining variables. Otherwise, we like to output ”?”.

77

We read the variables of Mk−l, . . . , Mk−1 blockwise and the variables of each
matrix rowwise. Polynomial size is sufficient to compute (ak−1, . . . , ak−l). Now
2k−l = 2k−dlog ke−1 ≤ n/k ≤ s2. Hence, we know an index i such that x|a| is in
Mi or in Mi+1 or x|a| is one of the remaining variables. We read the variables in
M0, . . . , Mk−l−1 except Mi and/or Mi+1 if they are among them. This is done
similarly to the reading of Mk−l, . . . , Mk−1. Then we know all a-bits except at
most two. Hence, |a| may take at most four values. We read Mi and/or Mi+1

in order to obtain the full information on |a|. Moreover, we store the value of
the at most four variables which describe the output. If x|a| is contained in
M0, . . . , Mk−l−1, we can reach the correct sink. If x|a| is a remaining variable,
we can test it to reach the correct sink. Otherwise, we reach the ?-sink.

In G2, we read the variables of M0, . . . , Mk−l−1, blockwise and the variables
of each matrix rowwise. Polynomial size is sufficient to compute (ak−l−1, . . . , a0).
The number of missing a-bits equals l = dlog ke + 1. The number of possible
|a|-values is bounded above by 4 log n. We read the matrices Mk−l, . . . , Mk−1

in order to obtain the value of |a|. Moreover, we store the value of the at most
4 log n variables which may determine the output. This is possible in polynomial
size. If x|a| belongs to Mk−l, . . . , Mk−1, we can reach the correct sink. If x|a| is
a remaining variable, we may test it to reach the correct sink. Otherwise, we
reach the ?-sink.

This FBDD has polynomial size, zero error and the failure probability is
bounded by 1/2.

Exercise 11.11. HWB ∈ NP-OBDD (Theorem 10.2.1) and NP-OBDD ⊆
PP-OBDD (see the remark before Theorem 11.3.4). We also present a direct
proof. We may use an arbitrary variable ordering. Let m be the smallest power
of 2 such that m ≥ n. Then m < 2n. We start with a complete binary tree of
randomized nodes and depth log m. In the ith OBDD, 1 ≤ i ≤ n, we compute
s = x1 + · · · + xn and store xi. If s 6= i, we reach a randomized node whose
c-successor is the c-sink. If s = i, we reach the xi-sink. Altogether, with
probability m−1

m we reach a sub-OBDD where the error probability is bounded
by 1/2. With probability 1

m we reach a sub-OBDD where the error probability
is 0. Hence, the error probability is bounded by m−1

2m = 1
2 − 1

2m < 1
2 − 1

4n .

Exercise 11.12. Let G be a randomized OBDD. We may guess an input
a ∈ {0, 1}n. Then (see Proposition 11.2.4) we can compute in O(|G|)arithmetic
steps accG(a) and rejG(a) and can verify whether both numbers are smaller
than 3/4.

Let c1, . . . , cm be a set of clauses defined on the variables x1, . . . , xn. Since
we may add trivial clauses like xi + xi, we can assume w.l.o.g. that m− 1 = 2k

for an integer k. We start with a complete binary tree of depth k + 2 consisting
of randomized nodes only. This tree has 4m− 4 leaves, 3m− 4 are replaced by
the 0-sink and the ith remaining leaf is replaced by an id-OBDD Gi realizing
ci. The construction of this randomized OBDD G is possible in linear time. By
definition, for each a ∈ {0, 1}n

1− rejG(a) = accG(a) ≤ m

4m− 4
<

3

4
(if m ≥ 2).

78

Moreover, rejG(a) < 3
4 iff all Gi accept a and this is equivalent to the property

that a is a satisfying input.

Exercise 11.13. Let G1 be a randomized k-IBDD and let G2 be a randomized
s-oblivious BDD both representing g ∈ Bn with some given error bound and
error type. Let Xn be the set of variables. With the same arguments as in
Section 7.5 we obtain the following results:

- For each partition (A, B) of Xn such that |A|, |B| ≥ bn/2c we can con-
struct sets A′ and B′ such that A′ ⊆ A, B′ ⊆ B; |A′|, |B′| ≥ bn/2k+1c and
the number of layers of G1 with respect to A′ and B′ is bounded by 2k.

- Let the length of s be bounded by kn and let A and B be disjoint sets
each containing bn/4c variables which all are labels of at most 2k levels.
Then there exist sets A′ ⊆ A and B′ ⊆ B such that |A′|, |B′| ≥ bn/24k−1c
and the number of layers of G2 with respect to A′ and B′ is bounded by
4k + 1.

Let g′ be a subfunction of g on A′ ∪ B′ and let the variables of A′ be given to
Alice and the variables of B′ be given to Bob. Then G1 leads to a randomized
2k-round randomized protocol for g′ of length 2kdlog |G1|e with the same error
bound and error type as G1. The same holds for G2 and (4k+1)-round protocols
of length (4k + 1)dlog |G2|e. Lower bounds on the randomized communication
complexity of g′ lead to lower bounds on the size of randomized k-IBDDs and
s-oblivious BDDs representing g′ or g. Moreover, if we can construct a rectan-
gular reduction from f to g (with the given partition of the variables), lower
bounds for the randomized communication complexity of f also hold for the
randomized communication complexity of g.

Exercise 11.14. Let π be a variable ordering on the variables x0, . . . , xn−1, y0,
. . . , yn−1 of ISAn and let G be a randomized π-OBDD representing ISAn with
two-sided ε-bounded error where ε < 1/2 is a constant.

We choose s as the largest power of 2 which is smaller than bn/kc =
bn/ log nc. Let L be the set of the first s x-variables according to π and let R be
the set of the remaining x-variables. Then there exists a block xj , . . . , xj+k−1

of x-variables which all belong to R. We fix the y-variables such that |y| = j.
This leads to a randomized π-OBDD G′ representing g = ISAn||y|=j with two
sided ε-bounded error and it is sufficient to prove a lower bound on G′.

We construct a rectangular reduction from INDEXs to g(L, R). This leads
by Theorem 11.7.1.i and our lower bound technique for randomized OBDDs
to a lower bound of 2Ω(n/ log n) for G′. The function φA : {0, 1}s → {0, 1}s is
the identity function. The function φB : {0, 1}log s → {0, 1}n−s is defined in the
following way. Let b ∈ {0, 1}log s. The vector φB(b) contains zeros at all positions
not belonging to the block xj , . . . , xj+k−1. The positions for xj , . . . , xj+k−1 are
replaced by the binary representation of the index of the |b|th variable of L.
Then INDEXs(a, b) = g(φA(a), φB(b)) and we have constructed the proposed
rectangular reduction.

79

Exercise 11.15. We use similar arguments as in the proof of Theorem 7.5.15.
Here G is a randomized (k − 1)-OBDD of size s representing PJk,n with two-
sided 1/3-bounded error. We use the same approach to obtain a pointer jumping
scenario as a subfunction of PJk,n such that the randomized (k − 1)-OBDD G′

obtained from G by the corresponding replacements by constants has at most
2k − 2 layers with respect to the variables given to Alice and Bob. Hence,
we obtain a randomized protocol of a length bounded by (2k − 2)dlog se for a
pointer jumping scenario for the parameter n1/2/3 (instead of n). Alice and
Bob ”evaluate” the randomized nodes in their layers by flipping coins. By
Theorem 11.7.1.ii,

(2k − 2)dlog se ≥ c(n1/2/(3k2)− k log(n1/2/3))

and s = 2Ω(n1/2/k2).
This leads to an exponential lower bound for constant k and to a non-polynomial
lower bound for k = o(n1/4/ log1/2 n).

Exercise 11.16. For ε ≤ 1/3 we obtain the same lower bounds as proved in
the solution of Exercise 11.15. Let ε > 1/3 and let G be a randomized (k − 1)-
OBDD representing PJk,n with two-sided ε-bounded error. Let s be the size of
G. We have seen in Exercise 11.4 that Theorem 11.3.5 also holds for (k − 1)-
OBDDs. Hence, we obtain a randomized (k − 1)-OBDD G′ representing PJk,n

with two-sided 1/3-bounded error whose size is bounded above by sm where
m = O((1

2 − 1
3)−2 log(ε−1)) is in our case a constant. Hence, by the solution

of Exercise 11.15 we get the lower bound 2Ω(n1/2/k2m) = 2Ω(n1/2/k2) which only
differs by a constant in the exponent compared to the case of an error probability
of 1/3.

Exercise 11.17. We may use the same approach as in the solutions of Exer-
cise 11.15 and Exercise 11.6. Again, the solution of Exercise 11.4 ensures that
we may apply Theorem 11.3.5 for (k−1)-IBDDs. Here, we obtain a randomized
protocol with two-sided 1/3-bounded error probability and length bounded by

(2k − 2)dlog se for a pointer jumping scenario for a parameter 2Ω(logδ n) instead
of n, if k ≤ (1− δ) log log n. By Theorem 11.7.1.ii,

(2k − 2)dlog se = Ω(2Ω(logδ n)/k2 − k log n) = 2Ω(logδ n),

if k ≤ (1−δ) log log n. For these values of k, the size of randomized (k−1)-IBDDs
representing PJk,n with two-sided 1/3-bounded error grows superpolynomially.
The same holds for each constant ε < 1/2 instead of 1/3. For constant k,

2Ω(logδ n) can be replaced by Ω(nα) for some α > 0 (see the proof of Theo-
rem 7.5.17) and this leads to lower bounds of exponential size.

Exercise 11.18. It is obvious that ZPP-FBDD ⊆ RP-FBDD ∩ coRP-FBDD.
Let f = (fn) ∈ RP-FBDD ∩ coRP-FBDD. Let Gn,1 be a randomized FBDD of
polynomial size p1(n) representing fn with one-sided ε1-bounded error for some
ε1 < 1. Let Gn,2 be a randomized FBDD of polynomial size p2(n) representing

80

fn with one-sided ε2-bounded error for some ε2 < 1. We may assume that Gn,1

and Gn,2 do not have a ?-sink. Let Gn be the following randomized FBDD. It
starts with a randomized node. The 0-edge leads to the source of Gn,1 where
we replace the 0-sink by a ?-sink. The 1-edge leads to the source of Gn,2 where
we replace the 0-sink by a ?-sink and the 1-sink by a 0-sink. Let fn(a) = 1.
If we leave the first node by its 0-edge, we reach the 1-sink with a probability
at least 1− ε1 and we reach the ?-sink otherwise. In Gn,2, we reach the 0-sink
for a ∈ f−1

n (1). Hence, if we leave the first node by its 1-edge, we reach with
probability 1 the ?-sink. We never reach the 0-sink and the probability of
reaching the correct sink, namely the 1-sink, is at least (1 − ε1)/2. Hence, the
failure probability is bounded above 1− (1− ε1)/2 ≤ (1 + ε1)/2 < 1. The same
analysis leads for inputs b ∈ f−1

n (0) to a failure probability bounded above by
(1 + ε2)/2 < 1. Also in this case the wrong sink, here the 1-sink, is never
reached. Hence, Gn is a randomized FBDD of polynomial size proving that
f = (fn) ∈ ZPP-FBDD.

Exercise 11.20. HWB is a separating example . It is contained in NP-OBDD∩
coNP-OBDD (Theorem 10.2.1) but not contained in BPP-OBDD (Theorem
11.7.8) and, therefore, not in RP-OBDD (Theorem 11.3.4).

81

