
Open Problems - Answers

Open Problem 2.15. An upper bound of O(n1+ε), ε > 0, follows from a general
simulation result contained in O. Giel: Branching program size is almost linear in
formula size. Journal of Computer and System Sciences 63, 222–235, 2001.

Open Problem 3.8. The answer “yes”. The solution will appear in Section 7.1.4 of
“The Art of Computer Programms Vol. 4” by Donald E. Knuth. It’s mainly based on
the reduction algorithm leading to Theorem 3.3.4.

Open Problem 4.12. The anser is “yes”, see the following paper: Bollig, B. (2008).
On the OBDD complexity of the most significant bit of integer multiplication, Proc. of
TAMC 2008, LNCS 4978, 306-317.

Open Problem 5.18. The answer is “yes”, see B. Bollig and I. Wegener: Asymptot-
ically optimal bounds for OBDDs and the solution of some basic OBDD problems.
Journal of Computer and System Sciences 61, 558–579, 2000.

Open Problem 6.17. There are two results on the complexity of EARn:

– The k-OBDD size is 2Ω(n1/2/k). (Diploma Thesis of Martin Sauerhoff. Univ.
Dortmund.)

– The FBDD size is nΘ(log n). (J. Kará and D. Král: Optimal free binary decision
diagrams for computation of EARn. 27th MFCS, LNCS 2420, 411–422, 2002.)

Open Problem 8.5. The ZBDD size of MUXn equals Θ(n2/ log n). B. Bollig and I.
Wegener. Asymptotically optimal bounds for OBDDs and the solution of some basic
OBDD problems. Journal of Computer and System Sciences 61, 558–579, 2000.

Open Problem 8.14. The answer is n + 2. The result has been obtained by M. Sauer-
hoff, Univ. Dortmund.

Proposition: Let f : {0, 1}n → {0, 1} be representable by a read-once formula over
the basis {⊕,∧} without negations. Then the OFDD size of f is n + 2.

Proof. This can be proven by looking closely at the construction in the proof of The-
orem 8.2.9 in the book and using the following observation: For an arbitrary function
ϕ representable by a read-once formula over {⊕,∧} without negations, it holds that
ϕ(0, . . . , 0) = 0.

For the convenience of the reader, we repeat the proof of Theorem 8.2.9 for our
special case. Let f be as described in the proposition. We construct an OFDD for
f with an isolated 0-path. An OFDD has an isolated 0-path if all nodes on the path
activated by the all-zeros input have indegree 1 (it is not really required that all variables
are tested on this path).
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First, let f = g∧h where g and h depend on disjoint sets of variables. The top part
of the OFDD for f is an OFDD with isolated 0-path for g. Since g(0, . . . , 0) = 0 by
our above remark, this isolated 0-path directly leads to the 0-sink (which is different
from the book, where the case g(0, . . . , 0) = 1 is shown). The 1-sink of the OFDD for
g is identified with the source of an OFDD with isolated 0-path for h. (See Fig.1a.)
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b) f = g ⊕ ha) f = g ∧ h

If f = g ⊕ h, the OFDD for f is constructed as shown in Fig. 1b. The top part
is an OFDD for g with isolated 0-path. At the end of this 0-path, an OFDD for h
with isolated 0-path is attached. Taking into account that g(0, . . . , 0) = 0, one easily
verifies that the whole OFDD computes the right function (in the case g(0, . . . , 0) = 1,
we would have to use an OFDD for h in the bottom part).

For any suitable function ϕ, let size(ϕ) denote the number of interior nodes of an
OFDD with isolated 0-path obtained by our construction. By considering both above
cases, we obviously have

size(f) ≤ size(g) + size(h).

Furthermore, if the formula for f only consists of a single variable, size(f) = 1. It
follows that the number of interior nodes in an OFDD with isolated 0-path for f is at
most n. Thus the size of an OFDD as well as the size of an OFDD with isolated 0-path
for f is exactly n + 2. 2

It remains open whether there are read-once formulas with larger than linear OFDD
size. We conjecture that the OFDD size of the following modified version of the alter-
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nating tree function is Ω(n log n), i. e., asymptotically matches the upper bound from
Theorem 8.2.9.
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Definition: Let n = 2k, k ≥ 0 even. The function AT∗
n : {0, 1}n → {0, 1} is defined

by AT∗
1(x) = x and

AT∗
n(u, v, x, y) :=

(

AT∗
n/4(u) ⊕ AT∗

n/4(v)
)

+
(

AT∗
n/4(x) ⊕ AT∗

n/4(y)
)

,

for n ≥ 4, where u, v, x, y are disjoint variable vectors of length n/4 each.

Open Problem 10.4. The answer is no, see M. Sauerhoff: Computing with restricted
nondeterminism: The dependence of the OBDD size on the number of nondetermin-
istic variables. Proc. of 19.Foundation of Software Technology and Theoretical Com-
puter Science. LNCS 1738, 342-355, 1999.

Open Problem 11.19 The following function gn is defined on n× n boolean matrices
(n even). It computes 1 iff at least one row has an odd number of ones and all columns
have an odd number of ones. This function is contained in RP-OBDD and in coRP-
OBDD but not in P-OBDD. This implies by Theorem 11.3.6 that the function is not in
ZPP-OBDD and therefore

ZPP-OBDD 6= RP-OBDD ∩ coRP-OBDD.

This result is due to Stasys Jukna: A note on the P versus NP intersected co-NP ques-
tion in communication complexity. Techn. Report 2005.

Open Problem 11.21. The problem has been implicitly solved by Jürgen Forster [1]
together with a known result of Martin Sauerhoff [3]. (Forster, Krause, Lokam,
Mubarakzjanov, Schmitt, and Simon have recently obtained a similar result [2].)

Forster [1] has shown that probabilistic communication protocols for the inner
product function IPn with unbounded error require length n/2. Substituting this into
a result from [3], one immediately gets an explicitly defined function which is not
contained in the complexity class PP-OBDD. We consider the following function.

Let n = 2`. Define SIPn : {0, 1}2n+` → {0, 1} (“shifted inner product”) on vec-
tors of variables x = (x0, . . . , xn−1) ∈ {0, 1}n, y = (y0, . . . , yn−1) ∈ {0, 1}n, and
s = (s0, . . . , s`−1) ∈ {0, 1}` by

SIPi
n(x, y) := 1 :⇔

n−1
∑

j=0

xjy(i+j) mod n 6≡ 0 mod 2, for i = 0, . . . , n − 1;

SIPn(x, y, s) :=
∨

0≤i≤n−1

[|s|2 = i] ∧ SIPi
n(x, y).

To prove the required lower bound for SIPn, we apply the technique from Chap-
ter 11.7 in the book. W. l. o. g. let n be even. Let X be the variable set of SIPn and
let π : {1, . . . , 2n + `} → X describe a variable order for SIPn. Let (X1, X2) be the
partition with X1 := {π(1), . . . , π(k)} and X2 = X − X1 where k is chosen such
that X1 contains exactly n/2 x-variables. Call variables xr and ys partners for the
function SIPi

n if r + i ≡ s mod n. By the pigeonhole principle it can be shown that
there is an i0 ∈ {0, . . . , n− 1} such that for at least m = n/2 pairs of variables which
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are partners with respect to SIPi0
n , both variables lie in different parts of the partition

(X1, X2). It follows that there is a rectangle reduction from IPm to SIPi0
n with respect

to the partition (X1, X2). Hence, lower bounds on communication complexity for IPm

can immediately be translated into lower bounds on the OBDD size of SIPn. By the
result of Forster, we especially get that each randomized OBDD for SIPn requires size
at least 2n/4. It is straightforward to extend these ideas to kOBDDs (see also [3]),
kIBDDs, and oblivious BPs of linear length by the standard techniques.
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Open Problem 11.25. The equation is not true. The function weighted sum WS is con-
tained in NP-FBDD and in coNP-FBDD but not in BPP-FBDD (and, therefore, neither
in RP-FBDD nor in coRP-FBDD). This result has been obtained in the following paper.
M. Sauerhoff: Randomness versus nondeterminism for read-once and read-k branching
programs. STACS ’2003, LNCS 2607, 307-318, 2003.
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