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Gittins Index Theorem

Instructor: Thomas Kesselheim

We will consider a special case of Markov decision process that we call Markovian multi-
armed bandit. Of course, the theory from last lecture applies. However, as they have an easy
structure, the optimal policies get particularly nice.

Let us first define a single-armed bandit. This is a Markov decision process that has only
two actions A = {play, stop}. The state transitions and rewards for action play are arbitrary,
but pstop(s, s) = 1, rstop(s) = 0 for all s ∈ S. That is, when using action stop, the process
remains in its state and gives no reward.
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Figure 1: A simple example of two arms. For large values of γ, it is better to play the first arm
first. Depending on the outcome, one then continues with the first or the second arm.

A multi-armed bandit bandit is a parallel composition of such single-armed bandits. We
have S = S1 × . . . × Sn, where Si is the state space of the ith single-armed bandits. Available
actions are A = {play1, . . . , playn, stop}, where playi means that we run the play action
on the ith single-armed bandit and stop on any other. So the different single-armed bandits
operate independently but we may only play one arm at a time.

We consider the infinite time-horizon setting with discounts, so for a policy π

V (π, s0) = E

[ ∞∑
t=0

γtraπt (sπt )

]
.

Remember that the value of an optimal policy is given as

V ∗(s) = max
a∈A

(
ra(s) + γ

∑
s′∈S

pa(s, s
′)V ∗(s′)

)
.

Note that once we have decided to stop, we will never play an arm again. If γ = 1 then
it would be irrelevant in which order we play the arms. However, because γ < 1, time is the
distinguishing factor.

We could always myopically choose the arm with the highest upcoming reward. However, in
the example above, we would want to play the arm once without getting any reward and then
play it again to get some big reward.
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1 Single-Armed Bandit with Charges

To better understand what is happening, we first consider only the single-arm problem. Suppose
you had to pay λ every time you played the arm. Then the value of the optimal policy starting
at state s would be (see last lecture)

V ∗(s, λ) = max

{
0, rplay(s)− λ+ γ

∑
s′∈S

pplay(s, s
′)V ∗(s′, λ)

}
.

Observe that for larger charges λ the value V ∗(s, λ) gets smaller and smaller. This means, there
is some amount δ(s) that makes the optimal policy only exactly as good as not playing at all.
Formally, δ(s) = sup{λ | V ∗(s, λ) > 0} = inf{λ | V ∗(s, λ) = 0}. This is the fair charge of state
s.

Based on the fair charges δ(s), it is very easy to describe an optimal policy for the arm with
charge λ: Whenever in a state s with δ(s) ≥ λ choose play, whenever in a state s with δ(s) < λ
choose stop.1
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Figure 2: A simple example of one deterministic arm with fair charges for γ = 1
2 .

We can bound the reward of a policy by the fair charges of the states during its execution.

Lemma 11.1. Consider a policy for a single arm that first only chooses play and then only
chooses stop. Let τ be the index of the step in which it chooses play for the last time. Then

E

[
τ∑
t=0

γtrplay(st)

]
≤ E

[
τ∑
t=0

γt min
t′≤t

δ(st′)

]

with equality if δ(sτ ) = mint′≤τ δ(st′) with probability 1.

Proof. Let us first consider the case of a policy for which δ(sτ ) = mint′≤τ δ(st′) with probability
1. An alternative way to understand such a policy is as follows: If δ(s0) ≥ x for some x, first
start the optimal policy for the arm with charges δ(s0). It stops at some time τ1. Then run the
optimal policy for the arm with charges δ(sτ1) until τ2 and so on until δ(st) < x, which is the
time that we stop.

Observe that the steps τk are exactly the times in which δ(st) is smaller than it has ever
been before. Otherwise, the optimal policy for the charged setting would continue playing.
Furthermore, the expected reward in the setting with charges overall is exactly 0. Therefore,
the expected sum of charges matches the expected sum of rewards in the setting without charges.
That is,

E

[τk+1∑
t=τk

γtrplay(st)

∣∣∣∣∣ τk
]

= E

[τk+1∑
t=τk

γtδ(sτk)

∣∣∣∣∣ τk
]

= E

[τk+1∑
t=τk

γt min
t′≤t

δ(st′)

∣∣∣∣∣ τk
]
.

Taking the sum over all k, the equality in the lemma follows.

1For δ(s) = λ actually both choices are equally good.
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To get the upper bound for a general policy, we can follow the argument above with the
exception that the policy might stop one of its sub-phases early. In this case, the fair cost of the
current state is higher than the charge. This means that expected reward for this sub-phase is
at most 0.

Lemma 11.2. Consider an arbitrary policy for a single arm and let the indices of steps in
which it plays the arm be denoted by T (possibly random, depending on previous states). Then

E

[∑
t∈T

γtrplay(st)

]
≤ E

[∑
t∈T

γt min
t′≤t

δ(st′)

]

with equality if δ(st) = mint′≤t δ(st′) for all t 6∈ T with probability 1.

Proof. Note that Lemma 11.1 is exactly the case that T = {0, 1, . . . , τ}.
It is easy to extend the lemma to the case T = {t′, . . . , t′+τ} because then δ(s0) = . . . = δ(st′)

and both sides get multiplied by the same γt
′
.

In general, T can be considered a union of disjoint interval, each of which has the form
{t′, . . . , t′ + τ}. By adding up the resulting inequalities, the lemma follows.

2 Gittins Index Theorem

If we have multiple arms, then we get a different value function for each arm

Vi(s, λ) = max

{
0, rplay,i(s)− λ+ γ

∑
s′∈S

pplay,i(s, s
′)V (s′, λ)

}
.

So Vi(s, λ) is the maximum expected reward that we could get out of arm i if each play costs
an additional λ. Note that Vi(s) only depends on the state of the ith arm, not on the states of
the other arms.

For each arm i and each state, we again get a fair charge

δi(s) = sup{λ | Vi(s, λ) > 0} = inf{λ | Vi(s, λ) = 0} .

We call this fair charge the Gittins index of the arm in state s.2

Our main result for today is as follows.

Theorem 11.3. It is an optimal policy to always play the arm with the highest Gittins index.

Proof. To prove the theorem, let Ti be the set of steps in which the Gittins index policy plays arm
i. Let us observe how the Gittins index δi(st) changes over time. If t 6∈ Ti, then δi(st+1) = δi(st).
If t ∈ Ti then δi(st+1) can differ from δi(st). If it gets larger, then we keep playing the arm. We
only stop playing the arm when its index falls below the value that we started from, meaning
it is an all-time low. In other words, if t 6∈ Ti then δi(st) ≤ mint′≤t δi(st′).

This allows us to invoke Lemma 11.2. We know that the expected reward from playing arm
i is exactly

E

∑
t∈Ti

γt min
t′≤t

δi(st)


2The original definition by Gittins and Jones is a little different but has the same consequences.
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and so the overall expected reward is exactly

Q =

n∑
i=1

E

∑
t∈Ti

γt min
t′≤t

δi(st)


For any other policy, we get different values of Ti and δi(st) but by Lemma 11.2 its expected

reward is still upper-bounded by the respectiveQ. Therefore, it is sufficient to show the following
proposition.

Proposition 11.4. Among all policies, the Gittins index policy maximizes

Q = E

 n∑
i=1

∑
t∈Ti

γt min
t′≤t

δi(st)

 .

We compare an arbitrary policy π to the Gittins index policy. For simplicity of the argument,
we assume that both policies play each arm infinitely often. The spirit of the argument does
not change without this assumption but things get much more messy.

For policy π as well as for the Gittins index policy, let us denote by xt or yt respectively,
the value of δmin,i(t) for the arm chosen in step t.

Arm i randomly transitions from one state in Si to another one, every time it is played.
Let us fix these transitions arbitrarily. This way, the sequences x1, x2, . . . and y1, y2, . . . are not
random anymore but fixed. Furthermore, they contain exactly the same numbers because each
arm makes the same state transitions, only the order varies.

For the Gittins index policy, we have y1 ≥ y2 ≥ . . ., so the sequence in non-increasing.
Therefore, now

Qπ =
∞∑
t=0

γtxt ≤
∞∑
t=0

γtyt = QGittins .

This holds for any fixed transitioning of each single arm, so it also holds in expectation.

Further Reading

• On the Gittins Index for Multiarmed Bandits, R. Weber, Ann. Appl. Probab. (This
proof without formulas)

• Four proofs of Gittins’ multiarmed bandit theorem, E. Frostig, G. Weiss, Applied Proba-
bility Trust (This and other proofs, with heavy notation)


