
Algorithms and Uncertainty, Winter 2017/18 Lecture 9 (5 pages)

No-Regret Learning: Multi-Armed Bandits

Instructor: Thomas Kesselheim

1 Last Lecture

Let us first summarize what we have seen in the last lecture. We consider an online learning
setting, in which our algorithm has n choices in each step, each choice corresponds to an expert.

First an adversary chooses a sequence of cost vectors `(1), . . . , `(T). Then, in step t, the
algorithm first chooses one of the n experts (possibly in an randomized way), which we call It.
Then the algorithm gets to know the entire vector `(t).

If `
(t)
i ∈ [0, ρ] we showed that Randomized Weighted Majority (RWM) is a randomized

algorithm (with parameter η) that guarantees

E

[
T∑
t=1

`
(t)
It

]
≤ (1 + η) min

i

T∑
t=1

`
(t)
i + ρ

lnn

η
. (1)

By setting η =
√

lnn
T , we get

E

[
T∑
t=1

`
(t)
It

]
≤ min

i

T∑
t=1

`
(t)
i +

√
lnn

T
min
i

T∑
t=1

`
(t)
i + ρ

√
T lnn ≤ min

i

T∑
t=1

`
(t)
i + 2ρ

√
T lnn .

The quantity R(T) = E
[∑T

t=1 `
(t)
It

]
− mini

∑T
t=1 `

(t)
i is called the (external) regret on the se-

quence. RWM guarantees that the is always bounded by 2ρ
√
T lnn.

An algorithm that guarantees R(T) = o(T) is called no regret because asymptotically the
algorithm does as well as the best expert.

2 Today: Partial Feedback (Adversarial Multi-Armed Bandits)

Today, we consider again the setting that we can choose between n actions in every step. An
adversary determines the sequence of cost vectors `(1), . . . , `(T) in advance and it is unknown to
the algorithm.

In step t, the algorithm chooses one of the n actions at random by defining probabilities

p
(t)
1 , . . . p

(t)
n . The algorithm’s choice in step t is denoted by It. The algorithm gets to know `

(t)
It

.
The other entries of the cost vector remain unknown.

In practice often the cost or reward of alternative actions are not revealed. For example, if
we run a news website, we might want to choose article headlines so as to maximize the number
of clicks or shares. For each user that arrives, we can only try out one particular choice and we
do not get to know how others would have performed.

Again, we are interested in a no-regret algorithm, that is the algorithm should ensure that
for all sequences `(1), . . . , `(T), the regret

R(T) = E

[
T∑
t=1

`
(t)
It

]
−min

i

T∑
t=1

`
(t)
i

grows sublinearly, that is, R(T) = o(T).

Algorithms and Uncertainty, Winter 2017/18 Lecture 9 (page 2 of 5)

3 A Black-Box Transformation

We will now get to know a black-box transformation to solve the bandits setting with an
algorithm for the experts setting. It is important to note here that this is not the optimal
algorithm and analysis in terms of the regret. However, the optimal one uses exactly these
ideas and is just a little more careful but more difficult.

The idea is as follows: We run an experts algorithm like RWM and we only give it the
feedback that we have in an ingenious way. Suppose we are in round t and the algorithm

chooses to play expert i with probability p
(t)
i . We do the same and get to know `

(t)
It

, `
(t)
i for

i 6= It is unknown to us.
The question is what feedback to return to the expert algorithm. Ideally we would want to

set ˜̀(t)
It

= `
(t)
It
/p

(t)
It

and ˜̀(t)
i = 0 for i 6= It and tell the experts algorithm that the feedback was

˜̀(t). This makes sense because E
[
˜̀(t)
i

]
= p

(t)
i · `

(t)
i /p

(t)
i = `

(t)
i , so in expectation the feedback is

just right.

There is one thing, we have to be careful about: p
(t)
i can be arbitrarily small, so ˜̀(t)

i is
unbounded. Our algorithm, however, only works on cost vectors between 0 and ρ. Therefore,

we will increase p
(t)
i by a small additive term to keep the numbers bounded.

In step t:

• Get probability vector p(t) from experts algorithm.

• Set q
(t)
i = (1− γ)p

(t)
i + γ

n .

• Choose It based on q(t).

• Return ˜̀(t)
It

= `
(t)
It
/q

(t)
It

and ˜̀(t)
i = 0 for i 6= It to the experts algorithm.

Theorem 9.1. When using RWM as the experts algorithm, the bandits algorithm guarantees
that for any sequence `(1), . . . , `(T)

E

[
T∑
t=1

`
(t)
It

]
≤ (1 + η) min

i

T∑
t=1

`
(t)
i +

n lnn

γη
+ γT .

Proof. Let us first fix a choice of I1, . . . , IT . This fixes the sequence ˜̀(1), . . . , ˜̀(n) that is given to
RWM. What would RWM do on this sequence? It computes probability fectors p(1), . . . , p(T).
These vectors have the property that

T∑
t=1

n∑
i=1

p
(t)
i

˜̀(t)
i ≤ (1 + η) min

i

T∑
t=1

˜̀(t)
i + ρ

lnn

η
= (1 + η) min

i

T∑
t=1

˜̀(t)
i +

n lnn

γη
.

As we set q
(t)
i = (1− γ)p

(t)
i + γ

n , we also have

T∑
t=1

n∑
i=1

q
(t)
i

˜̀(t)
i = (1−γ)

T∑
t=1

n∑
i=1

p
(t)
i

˜̀(t)
i +

γ

n

T∑
t=1

n∑
i=1

˜̀(t)
i ≤ (1+η) min

i

T∑
t=1

˜̀(t)
i +

n lnn

γη
+
γ

n

T∑
t=1

n∑
i=1

˜̀(t)
i .

So far, we kept I1, . . . , IT fixed. It is important to remark at this point that only our
algorithm produces this “fake” sequence during the run and we tried out what RWM would do
on the sequence. In the next step, we take the expectation over I1, . . . , IT on both sides.

E

[
T∑
t=1

n∑
i=1

q
(t)
i

˜̀(t)
i

]
≤ E

[
(1 + η) min

i

T∑
t=1

˜̀(t)
i +

n lnn

γη
+
γ

n

T∑
t=1

n∑
i=1

˜̀(t)
i

]
.

Algorithms and Uncertainty, Winter 2017/18 Lecture 9 (page 3 of 5)

Note that E
[
mini

∑T
t=1

˜̀(t)
i

]
≤ mini

∑T
t=1E

[
˜̀(t)
i

]
. So, by linearity of expectation

T∑
t=1

n∑
i=1

E
[
q
(t)
i

˜̀(t)
i

]
≤ (1 + η) min

i

T∑
t=1

E
[
˜̀(t)
i

]
+
n lnn

γη
+
γ

n

T∑
t=1

n∑
i=1

E
[
˜̀(t)
i

]
.

This inequality still talks about the fake sequence ˜̀(1), . . . , ˜̀(T) but we want to talk about the
real sequence `(1), . . . , `(T).

For the term E
[
˜̀(t)
i

]
on the right-hand side, this is pretty easy. Let us fix I1, . . . , It−1

arbitrarily. This fixes q(t) and Pr [It = i | I1, . . . , It−1] = q
(t)
i . So

E
[
˜̀(t)
i

∣∣∣ I1, . . . , It−1] = q
(t)
i · `

(t)
i /q

(t)
i = `

(t)
i

for any choices of I1, . . . , It−1. So, also E
[
˜̀(t)
i

]
= `

(t)
i . Furthermore,

∑T
t=1

∑n
i=1E

[
˜̀(t)
i

]
=∑T

t=1

∑n
i=1 `

(t)
i ≤ nT .

For the term E
[
q
(t)
i

˜̀(t)
i

]
on the left-hand side, we have to be a bit more careful because

both q
(t)
i and ˜̀(t)

i are random variables. We again fix I1, . . . , It−1 arbitrarily and this way, q(t)

is not random anymore. So, we now get

E
[
q
(t)
i

˜̀(t)
i

∣∣∣ I1, . . . , It−1] = q
(t)
i E

[
˜̀(t)
i

∣∣∣ I1, . . . , It−1] = q
(t)
i `

(t)
i .

Now, take the expectation over I1, . . . , It−1. Fortunately, `
(t)
i is not random, therefore

E
[
q
(t)
i

]
= E

[
q
(t)
i

]
`
(t)
i = Pr [It = i] `

(t)
i .

So, we also have

T∑
t=1

n∑
i=1

E
[
q
(t)
i

˜̀(t)
i

]
=

T∑
t=1

n∑
i=1

Pr [It = i] `
(t)
i = E

[
T∑
t=1

`
(t)
It

]
.

The bound in Theorem 9.1 depends on γ. Note that γ can be thought of balancing off
exploration and exploitation. If we set γ to 0, then once an action has turned out to be bad it
will rarely be chosen in the future because it is always reported to have high cost. If we set γ
to 1, then we ignore the history when making our decision. The parameter γ has to be chosen
carefully so that actions still have a chance to recover (meaning that we explore) but we keep
choosing the actions that turned out to be good so far.

If we set γ = η = 3

√
n lnn
T , then Theorem 9.1 gives us

E

[
T∑
t=1

`
(t)
It

]
≤ min

i

T∑
t=1

`
(t)
i +

n lnn

γη
+ (η + γ)T = min

i

T∑
t=1

`
(t)
i + 3(n lnn)1/3T 2/3 .

So the regret is bounded by 3(n lnn)1/3T 2/3. As a matter of fact, the same algorithm with
different choice of η and γ and only a more careful, but more complex analysis also gives a regret
bound of O(

√
Tn log n). Remember that for the experts setting, the bound was O(

√
T log n).

Algorithms and Uncertainty, Winter 2017/18 Lecture 9 (page 4 of 5)

4 Lower Bound on the Regret

Theorem 9.2. Even for n = 2, no algorithm guarantees external regret o(
√
T).

Proof. Let T be an even square number. We generate a random sequence `(1), . . . , `(T). For
each t, we set `(t) independently to (1, 0) or to (0, 1) with probability 1/2 each. Observe that
in each step, no matter how the algorithm chooses the probabilities, its expected cost will be

1/2. So E
[
L
(T)
Alg

]
= T/2, where the expectation is also over the randomization of the sequence.

We have to compare this to E
[
mini L

(T)
i

]
. We will show that E

[
mini L

(T)
i

]
= T/2−Ω(

√
T).

Note that L
(T)
1 and L

(T)
2 are identically distributed, namely according to a binomial distribution

with parameters T and 1/2. So they are the number of times we see heads in T independent
fair coin tosses.

Furthermore, L
(T)
1 + L

(T)
2 = T . So, mini L

(T)
i never exceeds T/2. Therefore, we can write

E

[
min
i
L
(T)
i

]
≤ Pr

[
min
i
L
(T)
i <

T

2
− α
√
T

](
T

2
− α
√
T

)
+ Pr

[
min
i
L
(T)
i ≥ T

2
− α
√
T

]
T

2

≤ T

2
− α
√
T + α

√
TPr

[
min
i
L
(T)
i ≥ T

2
− α
√
T

]
.

We have mini L
(T)
i ≥ T

2 − α
√
T if and only if T

2 − α
√
T ≤ L(T)

1 ≤ T
2 + α

√
T , so

Pr

[
min
i
L
(T)
i ≥ T

2
− α
√
T

]
= Pr

[
T

2
− α
√
T ≤ L(T)

1 ≤ T

2
+ α
√
T

]
.

We have to show that L
(T)
1 is not always close to its expectation (which is T/2). Pictorially, we

have to show that in the gray area there is at least a constant probability.

T
2 − α

√
T T

2 − α
√
T

As L
(T)
1 is binomially distributed, we have

Pr

[
T

2
− α
√
T ≤ L(T)

1 ≤ T

2
+ α
√
T

]
=

T
2
+α
√
T∑

j=T
2
−α
√
T

Pr
[
L
(T)
1 = j

]
and Pr

[
L
(T)
1 = j

]
=

1

2T

(
T

j

)
.

We have to bound the binomial coefficient. We can do this using Stirling’s approximation,
which says

√
2π kk+

1
2 e−k ≤ k! ≤ e kn+

1
2 e−k for all k. This gives us

(
T
T/2

)
≤ e

π
2T√
T

. Using the

monotonicity of binomial coefficients, we have
(
T
j

)
≤ e

π
2T√
T

for all j. So

Pr
[
L
(T)
1 = j

]
=

1

2T

(
T

j

)
≤ e

π

1√
T

and therefore

Pr

[
min
i
L
(T)
i ≥ T

2
− α
√
T

]
≤ 2α

√
T · e

π

1√
T

=
2αe

π

and also

E

[
min
i
L
(T)
i

]
≤ T

2
− α
√
T + α

√
T

2αe

π
.

Using, for example, α = 1
2 , we get E

[
mini L

(T)
i

]
≤ T

2 −
1
2(1− e

π)
√
T ≥ T

2 − 0.06
√
T .

Algorithms and Uncertainty, Winter 2017/18 Lecture 9 (page 5 of 5)

5 Unknown Time Horizon

So far, our algorithms assumed that we know the time horizon T . Indeed, with a slight modifi-
cation, they also work for unknown time horizons.

The modified algorithm works as follows. Phase k ≥ 0 consists of steps 2k, . . . , 2k+1 − 1.
So it consists of 2k steps. At the beginning of a phase, we restart the no-regret algorithm with
T ′ = 2k.

Let us analyze RWM in this construction.

Theorem 9.3. The modified version of RWM has regret O(
√
T log n).

Proof. We start m = blog2 T c + 1 phases during T steps. As the last phase might not be
complete, we fill up the sequence by `(T+1), . . . , `(2

m−1) with all-zero vectors. This neither
changes the cost of a single action nor of the algorithm.

In each phase, we restart the algorithm. Therefore, if Pk are the steps in phase k, we have
the regret guarantee ∑

t∈Pk

n∑
i=1

p
(t)
i `

(t)
i ≤ min

i

∑
t∈Pk

`
(t)
i + 2

√
|Pk| lnn .

Now, we take the sum over k = 0, . . . ,m on both sides

m−1∑
k=0

∑
t∈Pk

n∑
i=1

p
(t)
i `

(t)
i ≤

m−1∑
k=0

min
i

∑
t∈Pk

`
(t)
i + 2

m−1∑
k=0

√
|Pk| lnn

The first sum,
∑m

k=0

∑
t∈Pk

∑
i=1 np

(t)
i `

(t)
i is exactly the cost of the algorithm.

For the second sum, we have

m−1∑
k=0

min
i

∑
t∈Pk

`
(t)
i ≤ min

i

m−1∑
k=0

∑
t∈Pk

`
(t)
i = L

(T)
i .

And for the third sum, we use that |Pk| = 2k, which gives

2
m−1∑
k=0

√
|Pk| lnn = 2

√
lnn

m−1∑
k=0

(
√

2)k = 2
√

lnn
(
√

2)m − 1√
2− 1

= O(
√
T lnn) .

