
Algorithms and Uncertainty, Winter 2017/18 Lecture 8 (4 pages)

No-Regret Learning: Experts

Instructor: Thomas Kesselheim

Today, we will come to a different online kind of online problem with different kinds of algorithms
and performance measures.

As a motivating example, consider the following question of binary classification. You ob-
serve a sequence of samples from a data set and you have to classify them as “positive” or
“negative”. You make the choices one after the other, only after each choice you will get to
know the true label for this sample. You can rely on a set of n classifiers that will each tell you
their classification.

1 Majority Algorithm

Let us first consider the setting that one of the n classifiers is perfect and never makes any
mistakes. The difficulty is: You do not know which it is.

A very simple and natural approach is the following Majority algorithm: Let S be the set
of classifiers that have never been wrong so far. Follow the advice of the majority in S (with
arbitrary tie breaking).

Observation 8.1. If there is a perfect classifier, then the Majority algorithm makes at most
log2 n mistakes.

Proof idea. Every time, the algorithm makes a mistake, at least |S|/2 of the classifiers in S are
wrong. Therefore, in the following step, S will be at most half the size. As 1 ≤ |S| ≤ n in every
step, the claim follows.

2 Weighted Majority Algorithm

Let us now come to the general setting, in which each classifier makes a mistake every once in
awhile. We would like to not make a lot more mistakes than the best among the n classifiers.

Of course, we cannot follow the above Majority rule because the set S will sooner or later be
empty. Instead, we maintain for each classifier a weight wi. Let wi(1) = 1. If classifier i is correct

in step t, then w
(t+1)
i = w

(t)
i , otherwise, if it is wrong, reduce it by setting w

(t+1)
i = (1− η)w

(t)
i ,

where η ≤ 1/2 is a parameter of the algorithm. Our decision in step t is to follow the weighted
majority of classifiers.

Theorem 8.2. Weighted Majority makes at most (2 + 2η) minimi + 2 lnn/η mistakes, where
mi is the number of mistakes that classifier i makes.

Proof. Let W (t) =
∑N

i=1w
(t)
i be the sum of weights in step t. Note that W (t) never increases as

weights are only reduced. By the change of W (t), we can estimate how many mistakes Weighted
Majority makes.

Consider a fixed step t, in which Weighted Majority makes a mistake. Let U ⊆ [n] be the

set of classifiers that are incorrect. Then, by definition
∑

i∈U w
(t)
i ≥

∑
i 6∈U w

(t)
i , or equivalently∑

i∈U w
(t)
i ≥

1
2

∑
iw

(t)
i = 1

2W
(t).

Algorithms and Uncertainty, Winter 2017/18 Lecture 8 (page 2 of 4)

For all i ∈ U , the algorithm updates the weight w
(t+1)
i = (1 − η)w

(t)
i . For i 6∈ U , we have

w
(t+1)
i = w

(t)
i . Therefore,

W (t+1) =
∑
i∈U

w
(t+1)
i +

∑
i 6∈U

w
(t+1)
i =

∑
i∈U

(1−η)w
(t)
i +

∑
i 6∈U

w
(t)
i = W (t)−η

∑
i∈U

w
(t)
i ≤

(
1− η

2

)
W (t) .

Let M be the number of mistakes that the algorithm makes within the first T steps. By this

observation, we have W (T+1) ≤
(
1− η

2

)M
W (1) =

(
1− η

2

)M
n.

Let mi be the number of mistakes that classifier i makes within the first T steps. The

algorithm is defined to set w
(T+1)
i = (1− η)miw

(1)
i = (1− η)mi . Also W (T+1) ≥ wi(T + 1).

Combining these two bounds, we get

(1− η)mi ≤W (T+1) ≤
(

1− η

2

)M
n .

Let us take the logarithm on both sides

mi ln(1− η) ≤M ln
(

1− η

2

)
+ lnn .

In order to simplify, we will now use the following estimation

−z − z2 ≤ ln(1− z) ≤ −z , (1)

which holds for every z ∈ [0, 12].

−z − z2
ln(1− z)
−z

Therefore
mi(−η − η2) ≤M

(
−η

2

)
+ lnn ,

or equivalently

M ≤ (2 + 2η)mi + 2
lnn

η
.

3 Randomized Weighted Majority Algorithm

Now, we will see that we can actually do much better by using randomization. Not only the
guarantee will be better but we also cover a more general setting. Instead of having binary
classifiers, we now have arbitrary experts, which give us a piece of advice for every round. We
choose one of these experts and follow her advice. In particular, the advice could simply be

Algorithms and Uncertainty, Winter 2017/18 Lecture 8 (page 3 of 4)

the positive or negative label. Afterwards, we get to know how good each of these experts
performed in this round.

We will consider a sequence of cost vectors (`
(t)
i)i∈[n],t∈[T], `

(t)
i ∈ [0, 1] for all i and t. In step

t, we choose an expert It at random, then we get to know `1, . . . , `n and incur costs `It .
The idea of Randomized Weighted Majority is generally the same as for Weighted Majority.

It maintains weights w
(t)
i , which are updated depending on the performance in the previous

round. Instead of using a majority vote, we now interpret them a probability distributions.
Let η ∈ (0, 12]; we will choose η later.

• Initially, set w
(1)
i = 1, for every i ∈ [n].

• At every time t,

– Let W (t) =
∑N

i=1w
(t)
i ;

– Choose strategy i with probability p
(t)
i = w

(t)
i /W (t);

– Set w
(t+1)
i = w

(t)
i · (1− η)`

(t)
i .

Theorem 8.3 (Littlestone and Warmuth, 1994). Randomized Weighted Majority, for any se-
quence of cost vectors from [0, 1], guarantees

L
(T)
RWM ≤ (1 + η)L

(T)
i +

lnn

η
,

where L
(T)
i =

∑T
t=1 `

(t)
i is the sum of costs of expert i and L

(T)
RWM =

∑T
t=1

∑n
i=1 p

(t)
i `

(t)
i is the

expected sum of costs of RWM.

Proof. Let us analyze how the sum of weights W (t) decreases over time. It holds

W (t+1) =

N∑
i=1

w
(t+1)
i =

N∑
i=1

w
(t)
i (1− η)`

(t)
i .

Observe that (1− η)` = (1− `η), for both ` = 0 and ` = 1. Furthermore, (1− η)` is a convex
function in `. For ` ∈ [0, 1] this implies (1− η)` ≤ (1− `η).

1− 1
2`

(1− 1
2)`

This gives us

W (t+1) ≤
N∑
i=1

w
(t)
i (1− `(t)i η) = W (t) − η

N∑
i=1

w
(t)
i `

(t)
i .

Algorithms and Uncertainty, Winter 2017/18 Lecture 8 (page 4 of 4)

Let `
(t)
RWM denote the expected cost of RWM in step t. It holds `

(t)
RWM =

∑N
i=1 `

(t)
i w

(t)
i /W (t).

Substituting this into the bound for W (t+1) gives

W (t+1) ≤ W (t) − η`(t)W (t) = W (t)(1− η`(t)RWM) .

As a consequence,

W (T+1) ≤ W 1
T∏
t=1

(1− η`(t)RWM) = N
T∏
t=1

(1− η`(t)RWM) .

The sum of weights after step T can be upper bounded in terms of the expected costs of RWM.
On the other hand, the sum of weights after step T can be lower bounded in terms of the costs
of the best strategy as follows:

W (T+1) ≥ w
(T+1)
i =

(
w1
i

T∏
t=1

(1− η)`
(t)
i

)
=
(

(1− η)
∑T

t=1 `
(t)
i

)
= (1− η)L

(T)
i .

Combining the bounds and taking the logarithm on both sides gives us

L
(T)
i ln(1− η) ≤ (lnn) +

T∑
t=1

ln(1− η`(t)) .

Applying Equation (1), we get

L
(T)
i (−η − η2) ≤ (lnn) +

T∑
t=1

(−η`(t))

= (lnn)− ηL(T)
RWM .

Finally, solving for L
(T)
RWM gives

L
(T)
RWM ≤ (1 + η)L

(T)
i +

lnn

η
.

Note that setting η =
√

lnn
T yields

L
(T)
RWM ≤ min

i
L
(T)
i + 2

√
T lnn .

We call R(t) = L
(T)
RWM − L

(T)
i the (external) regret of the algorithm on the sequence. An

algorithm that guarantees that for any sequence R(t) = o(T) is called a no-external-regret
algorithm.

Corollary 8.4. The multiplicative-weights algorithm with η =
√

lnn
T has external regret at most

2
√
T lnn = o(T) and hence is a no-external-regret algorithm.

4 Extension

The result so far assumed that `
(t)
i ∈ [0, 1] for all i and t. This result can be extended to allow

`
(t)
i ∈ [0, ρ] for all i and t: We divide all observed costs by ρ and feed them into the RWM. We

then get
1

ρ
L
(T)
RWM ≤

1

ρ
min
i
L
(T)
i + 2

√
T lnn .

So, the new algorithm’s regret is at most 2ρ
√
T lnn.

