
Algorithms and Uncertainty, Winter 2017/18 Lecture 7 (4 pages)

Secretary Matching

Instructor: Thomas Kesselheim

Today, we will consider the following generalization of the secretary problem. We again
have n applicants that arrive online but now we have multiple positions that we hire for. Each
applicant i has a qualification score w(i, j) for each job j. We get to know all these scores when
the respective candidate arrives. We then have to immediately and irrevocably decide whether
we hire her for a position and if so which one or if we reject her. For each position, we may
select at most one candidate, and for each candidate we may select at most one position. The
objective is to maximize the sum of the scores w(i, j) for which i is assigned to j.

We can formalized this problem as edge-weighted matching (Korula and Pál, [2]).

1. Adversary chooses edge-weighted bipartite graph G = (L,R,w)

2. Nature draws permutation of L uniformly

3. Algorithm sees vertices L one after the other with edges and weights; has to select at most
one edge; all selected edges must be a matching at all times

Note that here the set of L is the set of online vertices, R is the set of offline vertices.
Like in the first lectures, we will compare w(ALG(G)) and to w(OPT(G)). Let us call an

algorithm c-competitive if

E [w(ALG(G))] ≥ c · w(OPT(G)) ,

where the expectation is over the random order of arrival and possibly over internal random-
ization of the algorithm.

This is a different benchmark than we considered in the last lecture, where we maximized the
probability of selecting the best candidate in the sequence. However, also for this benchmark
one can show that for the secretary problem we have c ≤ maxτ∈{0,1,...,n}

∑n
t=τ+1

1
n

τ
t−1 for any

algorithm. Today, we will get to know an algorithm for which c ≥ maxτ∈{0,1,...,n}
∑n

t=τ+1
1
n

τ
t−1 .

1 Algorithm

We will consider the following algorithm (from [1]), which generalizes the threshold algorithm
for the secretary problem from last lecture. Again, we do not do anything for the first τ rounds.
Afterwards, whenever a new vertex is presented to the algorithm, we compute an optimum
solution on the revealed part of the graph. If, in this local solution, the current online vertex is
assigned to an unmatched offline vertex, we add this edge to our matching.

2 Analysis

We let `t ∈ L denote the vertex that arrives in step ` and rt ∈ R is the associated right-hand
side vertex in the tentative edge e(t) = (`t, rt).

Theorem 7.1. For Algorithm 1,

E [w(ALG(G))] ≥
n∑

t=τ+1

1

n

τ

t− 1
· w(OPT(G)) ,

Algorithms and Uncertainty, Winter 2017/18 Lecture 7 (page 2 of 4)

Algorithm 1: Bipartite online matching

Input : vertex set R and cardinality n = |L|
Output: matching Accept

Let L′ be the first τ vertices of L;
for each subsequent vertex `t ∈ L− L′ do // steps τ + 1 to n

L′ := L′ ∪ `t; t := |L′|;
M (t) := optimal matching on G[L′ ∪R]; // e.g. by Hungarian method

Let e(t) := (`t, rt) be the edge assigned to `t in M (t);

if Accept ∪ e(t) is a matching then

add e(t) to Accept;

Let OPT be the weight of the optimal matching M∗ on the full graph G. We will show
that the expected weight of e(t), i.e. of the edge assigned to vertex `t in the matching M (t), is
a significant fraction of OPT. Then, we will analyze the probability of adding this edge to the
output matching Accept.

We will think about the random permutation of L being generation by random draws from
the set L without replacement. The key idea is to start this process from the end. That is, we
first determine `n, then `n−1, and so on. This already makes clear that, for any fixed choice
of `t+1, . . . , `n, vertex `t is drawn uniformly from L = L′ \ {`t+1, . . . , `n}. This perspective will
help us argue that involved events can be considered as independent.

Lemma 7.2. The expected weight of the edge e(t) that is tentatively matched in round t is

E
[
w(e(t))

]
≥ OPT

n
.

Proof. In step t, we have |L′| = t and the algorithm calculates an optimal matching M (t) on
G[L′ ∪ R]. The current vertex `t can be seen as being selected uniformly at random from the
set L′. Hence, the expected weight of the edge e(t) is E

[
w(e(t))

∣∣ L′] = 1/t · w(M (t)).
Additionally, L′ ⊆ L with size |L′| = t is selected uniformly at random. Therefore the

expected value of the matching M∗ restricted to G[L′ ∪R] is E [w(M∗ ∩ (L′ ×R))] = t/n ·OPT.
Observe that M∗∩(L′×R) would be a feasible choice for M (t). So, as M (t) is a maximum-weight
matching in G[L′ ∪R], its weight is at least the one of M∗ ∩ (L′ ×R). Therefore, its expected
value is at least E

[
w
(
M (t)

)]
≥ t/n ·OPT. Together this yields the lemma.

Note that the above expectation is only over the random choice of the set L′ and the choice
of the element to be last in their order. The rest of the proof will exploit the randomness in the
order of the remaining t− 1 vertices in L′.

Lemma 7.3. For all t ≥ τ + 1 and all choices of {ut, . . . , un} ⊆ L, the probability that it is
feasible to add edge e(t) to the output matching M is

Pr
[
e(t) ∪Accept is a matching

∣∣∣ `t = ut, . . . , `n = un

]
≥ τ

t− 1
.

First, we give an intuitive explanation for Lemma 7.3. Observe that, after conditioning on
`t = ut, . . . , `n = un, the edge e(t) is not random anymore because M (t) and `t are determined.

The edge e(t) = (`t, rt) can only be added to the matching Accept if rt has not already
been matched in an earlier step. Consider the vertex rt. In any of the preceding steps k ∈

Algorithms and Uncertainty, Winter 2017/18 Lecture 7 (page 3 of 4)

{τ + 1, . . . , t − 1} the vertex rt was matched only if it was in e(k), i.e. if in M (k) the vertex rt
was assigned to the left-hand side vertex `k that is rk = rt.

Again, the last vertex in the order can be seen as being chosen uniformly at random from
the k participating vertices on the left-hand side. Hence, the probability of rt being matched
in step k was at most 1/k. As before, the order of the vertices 1, . . . , k − 1 is irrelevant for this
event. Therefore, also the respective events if some vertex k′ < k was matched to rt can be
regarded as independent.

For a formal proof, we show the following proposition inductively. The case r = rt and
t′ = t− 1 then gives the lemma.

Proposition 7.4. For all t′ ≥ τ + 1, all r ∈ R and all choices of {ut′+1, . . . , un} ⊆ L, we have

Pr

[
t′∧

k=τ+1

r /∈ e(k)
∣∣∣∣∣ `t′+1 = ut′+1, . . . , `n = un

]
≥ τ

t′
.

Proof. We prove this claim by induction on t′. The claim holds for t′ = τ + 1 because, in this
case, we only have to consider the matching M (τ+1). In this matching, there are at most τ + 1
edges and the vertex vτ+1 is chosen uniformly at random from Lτ+1. So the probability that r
is matched in step τ + 1 is Pr

[
r ∈ e(τ+1)

]
≤ 1

τ+1 .
From now on, we assume that the claim holds for t′ − 1 and we derive that it also holds for

t′. Let Et′ denote the event that (`t′+1 = ut′+1) ∧ Et′+1 for some fixed ut′+1, . . . , un.
Note that by fixing all arrivals in rounds t′ + 1, . . . , n, we also fix the matching M (t′).

Therefore, after conditioning on Et′ , M (t′) is not random anymore. Let S ⊆ V \ {ut′+1, . . . , un}
denote the set of online vertices that are not matched to r in M (t′). We now write the probability
as the sum of probabilities of disjoint events, depending on which online vertex arrives in round
t′, as follows

Pr

[
t′∧

k=τ+1

r /∈ e(k)
∣∣∣∣∣ Et′

]
=
∑
u∈S

Pr [`t′ = u | Et′]Pr

[
t′−1∧
k=τ+1

r /∈ e(k)
∣∣∣∣∣ `t′ = u, Et′

]
.

The size of the set S is at least |S| ≥ t′ − 1 because at most one online vertex is matched to
r in M (t′). Furthermore, for all u ∈ V \ {ut′+1, . . . , un}, we have Pr [`t′ = u | Et′] = 1

t′ because
conditioning on the event E effectively restricts which set of online vertices arrives in round
1, . . . , t′ but not their respective order. Finally, by induction hypothesis, we have

Pr

[
t′−1∧
k=τ+1

r /∈ e(k)
∣∣∣∣∣ `t′ = u, Et′

]
≥ τ

t′ − 1
.

This way, we get

Pr

[
t′∧

k=τ+1

r /∈ e(k)
∣∣∣∣∣ Et′

]
≥ (t′ − 1)

1

t′
τ

t′ − 1
=
τ

t′
.

Proof of Theorem 7.1. The weight of the matchting Accept is the sum of the weights of the
tentative edges combined with the probability that these edges are feasible. Let At be a random
variable that is 1 if Accept ∪ e(t) is a matching and 0 otherwise. We get

E [w(Accept)] = E

[
n∑

t=τ+1

w(e(t)) ·At

]
.

Algorithms and Uncertainty, Winter 2017/18 Lecture 7 (page 4 of 4)

The expected value of the edge e(t) only depends on the set of vertices that have arrived
by step t, but not on the order. Whereas At depends on the exact ordering of the vertices
vτ+1, . . . , vt−1. We have

E [w(Accept)] =

n∑
t=τ+1

E
[
w(e(t))

]
·Pr [At | Et] .

Like in the previous proof, the condition on Et = (`t+1 = ut+1)∧Et+1 for some fixed ut+1, . . . , un
fixes the whole input ordering in the future rounds t+ 1 to n. In addition, Et also fixes the set
of items that has already arrived up to and including round t.

We evaluate this sum starting with the last index t = n. In this way, the randomness used
for every index t ∈ {τ + 1, . . . , n} is exactly the random draw of the item that arrives in round
t from the set of all items that previously arrived. This is independent and gives us,

E [w(Accept)] ≥
n∑

t=τ+1

τ

t− 1
· OPT

n
=
τ

n
·
n−1∑
t=τ

1

t
·OPT .

For τ = bn/ec, we have τ
n ≥

1
e −

1
n and

∑n−1
t=τ

1
t ≥ ln

(
n
τ

)
≥ 1 which gives,

E [w(Accept)] ≥ τ

n
·
n−1∑
t=τ

1

t
·OPT ≥

(
1

e
− 1

n

)
·OPT .

References

[1] Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An optimal
online algorithm for weighted bipartite matching and extensions to combinatorial auctions.
In Hans L. Bodlaender and Giuseppe F. Italiano, editors, Algorithms - ESA 2013 - 21st
Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings,
volume 8125 of Lecture Notes in Computer Science, pages 589–600. Springer, 2013.

[2] Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hyper-
graphs. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikolet-
seas, and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th Inter-
natilonal Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II,
volume 5556 of Lecture Notes in Computer Science, pages 508–520. Springer, 2009.

