
Algorithms and Uncertainty, Winter 2017/18 Lecture 6 (4 pages)

The Secretary Problem and the Random-Order Model

Instructor: Thomas Kesselheim

Let us consider the following online selection problem, in which you have to make commitments
before you know all you choices. Suppose you want to buy a house. You go see several houses
and (a bit simplifying here) after each visit you have to decide immediately and irrevocably if
you want to buy this particular house or if you want to keep on looking – then somebody else
will buy it. Another motivation would be that you want to find the love of your life. You start
dating and (even more simplifying here) after each first date you have to decide whether you
you want to marry this person or if you want to keep looking.

We can model this problem as follows. There are n candidates of values v1, . . . vn ∈ R,
vi ≥ 0. You see the values of these candidates in order 1, . . . , n. After having seen the i-th
candidate you can choose to select it or to reject it. The goal is to maximize the value of the
candidate that you select.

It is easy to observe that no algorithms have any reasonable performance if we apply com-
petitive analysis as we did so far in this course.

Observation 6.1. There is no deterministic online algorithm that is better than 0-competitive
for any n. No randomized algorithm is c-competitive for c > 1

n .

Note that the trivial algorithm that simply chooses a uniformly drawn random candidate
is 1

n -competitive, although it does not even look at the values. This, of course, does not mean
that this stupid algorithm is the best thing one could do. Competitive analysis as we have seen
it so far just cannot express this. Therefore, we will consider a different model today.

We will consider the random-order model. First, an adversary defines values v1, . . . , vn and
then a randomly drawn permutation π is applied before we get to see and select the candidates.
This problem is known as the secretary problem. To simplify the argument, we assume that all
values are distinct, i.e., vi 6= vj for i 6= j.

1 Threshold Algorithm

If we can take advantage of the random order then it is reasonable to first observe the sequence
a bit and then later use these observations to estimate how good the newly arriving candidates
are in comparison to the entire sequence.

In particular, let us consider the following threshold algorithm: Observe the first τ elements
in the sequence, without selecting any of these. Afterwards, select an element if it is the best
one so far.

Theorem 6.2. For any τ , the threshold algorithm selects the maximum-weight element with
probability

n∑
t=τ+1

1

n

τ

t− 1
.

Proof. Without loss of generality, let v1 > v2 > . . . > vn. By this definition, the step in which
the maximum-weight element arrives is given as π(1) and so on.

Observe that the algorithm succeeds if π(1) > τ and no other element is picked before that
round.

Pr [select best] =

n∑
t=τ+1

Pr [π(1) = t,no element is picked before round t] .

Algorithms and Uncertainty, Winter 2017/18 Lecture 6 (page 2 of 4)

Let St ⊆ [n] be the set of elements that arrive before round t. Among these elements, minSt
is the one with highest value.1 Observe that no element is picked before round t if and only if
π(minSt) ≤ τ . This gives us

Pr [select best] =
n∑

t=τ+1

Pr [π(1) = t]Pr [π(minSt) ≤ τ | π(1) = t] .

It is clear that Pr [π(1) = t] = 1
n but what is Pr [π(maxSt) ≤ τ | π(1) = t]? By conditioning

on π(1) = t, the set St is a uniformly random subset of size t − 1 drawn from n − 1 possible
elements. Each possible outcome, gives us a minimum. And this minimum is within the first τ
rounds with probability τ

t−1 . Very formally, we can write this as

Pr [π(minSt) ≤ τ | π(1) = t]

=
∑

M⊆{2,...,n}

Pr [St = M,π(minM) ≤ τ | π(1) = t]

=
∑

M⊆{2,...,n}

Pr [St = M, | π(1) = t]Pr [π(minM) ≤ τ | St = M,π(1) = t]

=
∑

M⊆{2,...,n}

Pr [St = M, | π(1) = t]
τ

t− 1

=
τ

t− 1
.

Note that in this argument it is very crucial that if you condition on M = St you have only
fixed which elements arrive in rounds 1, . . . , t− 1 but not their mutual order.

Overall, we now get

Pr [select best] =
n∑

t=τ+1

1

n

τ

t− 1
.

Observe that we can approximate the sum by an integral

n∑
t=τ+1

1

n

τ

t− 1
≥ τ

n

∫ n

τ

1

x
dx =

τ

n
ln
(n
τ

)
.

Now setting τ = bne c, gives τ
n ln

(
n
τ

)
≥

n
e
−1
n ln

(
n
n
e

)
= 1

e −
1
n .

Corollary 6.3. There is an algorithm that selects the maximum-weight element with probability
at least 1

e −
1
n .

2 The Optimal Algorithm

After this positive result, we would like to understand whether there is something better that
we could do. We will only consider the case of pairwise comparisons and our goal will be to
maximize the probability that we select the best candidate. We will show that indeed the
algorithm with the highest probability is indeed a threshold algorithm.

1The use of the minimum can be slightly confusing here. It is because smaller indices mean higher values.

Algorithms and Uncertainty, Winter 2017/18 Lecture 6 (page 3 of 4)

Theorem 6.4. For any n, any algorithm that only uses pairwise comparisons selects the
maximum-weight element with probability at most

max
τ∈{0,1,...,n}

n∑
t=τ+1

1

n

τ

t− 1
.

In order to capture the setting of pairwise comparisons, let Rt ∈ {1, . . . , t} be the relative
rank of the candidate arriving in step t compared to the once that arrived before. That is,
Rt = 1 means that it is the best so far, Rt = 2 that it is the second best, and so forth, up to
Rt = t, which means that all other candidates up to this point were better.

It is not difficult to see that such rank vectors are in one-to-one correspondence with per-
mutations. Drawing the permutation uniformly, we assume that all Rt are independent, Rt
is drawn uniformly from {1, . . . , t}. We select the best candidate if we stop the sequence at t
such that Rt = 1 and Rt′ > 1 for t′ > t. The advantage of this notation is that, in step t, the
algorithm knows exactly R1, . . . , Rt but not Rt+1, . . . , Rn.

Let us get acquainted to this notation with a simple calculation that we need later on.

Lemma 6.5. For all t, we have

Pr [Rt+1 > 1, Rt+2 > 1, . . . , Rn > 1] =
t

n
.

Proof. We can argue in two ways. On the one hand, the event Rt+1 > 1, Rt+2 > 1, . . . , Rn > 1
means that the best candidate arrives by round t. As we know, the probability for this is t

n .
On the other hand, we can also consider the permutation being constructed piece-wise.

Some candidates have arrived by t. Now, we draw how the candidate in steps t, t + 1, and so
on compare to these existing candidates. We have

Pr [Rt+1 > 1, Rt+2 > 1, . . . , Rn > 1] = Pr [Rt+1 > 1] ·Pr [Rt+2 > 1] · . . . ·Pr [Rn > 1]

=
t

t+ 1
· t+ 1

t+ 2
· . . . · n− 1

n
=
t

n
.

Given t ∈ {1, . . . , n}, consider the class of online algorithms that never make any selections
in the first t− 1 steps. Let At be the algorithm with the highest probability of success among
them. Let pt be its success probability.

We would like to understand A1 and p1. To this end, let us first consider t = n. Clearly,
such an algorithm can only win if Rn = 1. Therefore pn = 1

n . One possible choice for An is to
select in step n if and only if Rn = 1.

Next, we consider t = n − 1. If Rn−1 > 1, then the algorithm should better reject the
candidate in step n − 1 and move forward. It only wins if Rn = 1 if this case. Otherwise,
if Rn−1 = 1, it does have a choice. It can select the current candidate, in which case it only
loses if then Rn = 1, or it can reject it, in which case it only wins if Rn = 1. Note that
Pr [Rn = 1] = 1

n ≤
1
2 , so accepting is a better choice. Therefore

pn−1 = Pr [Rn−1 > 1]Pr [Rn = 1] + Pr [Rn−1 = 1]Pr [Rn > 1]

=

(
1− 1

n− 1

)
1

n
+

1

n− 1

(
1− 1

n

)
.

Let us now move to an arbitrary t. In the case Rt > 1, we have to reject because there is no
chance of winning if we accept. In the case Rt = 1, we can accept, then we win if and only if
Rt′ > 1 for all t′ > t. This happens with probability t

n by Lemma 2. If we reject, then we have

Algorithms and Uncertainty, Winter 2017/18 Lecture 6 (page 4 of 4)

to follow algorithm At+1 because we cannot change previous decisions or random outcomes. So,
then we win with probability pt+1. We choose the better of these two options, so

pt = Pr [Rt > 1] · pt+1 + Pr [Rt+1 = 1] ·max

{
t

n
, pt+1

}
=

(
1− 1

t

)
pt+1 +

1

t
max

{
t

n
, pt+1

}
.

Observe that pt ≥ pt+1, so (pt)t∈{1,...,n} is non-decreasing. In contrast, t
n < t+1

n . So, if

pt+1 ≤ t
n , then pt+2 <

t+1
n . So, we know that there has to be a τ ∈ {1, . . . , n} such that

pt =

{(
1− 1

t

)
pt+1 + 1

t pt+1 if t ≤ τ(
1− 1

t

)
pt+1 + 1

t
t
n otherwise

=

{
pt+1 if t ≤ τ(
1− 1

t

)
pt+1 + 1

n otherwise

We can solve this recursion easily

p1 = pτ+1 =
1

n
+

τ

τ + 1
pτ+2 =

1

n
+

τ

τ + 1

1

n
+

τ

τ + 1

τ + 1

τ + 2
pτ+3 = . . . =

n∑
t=τ+1

1

n

τ

t− 1
.

