Algorithms and Uncertainty, Winter 2017/18 Lecture 3 (4 pages)
Fractional Online Set Cover via LP Duality

Instructor: Thomas Kesselheim

Today, we will learn about a fundamental technique in the design of online algorithms. As
our motivating example, we consider the set cover problem in its weighted variant. In the offline
version, you are given a universe of m elements U = {1,...,m} and a family of n subsets of
U called S C 2Y. For each S € S, there is a cost cg. Your task is to find a cover C C S of
minimum cost) ¢ - cs. A set C is a cover if for each e € U there is an S € C such that e € S.
Alternatively, you could say | Jgee S = U.

We assume that each element of U is included in at least one S € S. So in other words S is
a feasible cover. Otherwise, there might not be a feasible solution.

Note that the problem is NP-hard in the offline case, so this already limits our expectations.
We will consider the online version, in which the universe U arrives online, one element at a
time. Whenever an element is revealed, we get to know which sets S € § it is contained in and
have to make sure that it is covered, potentially by adding a set from S to C. We may never
remove sets from C. Our goal is to eventually select sets so as to minimize) gc cs.

1 LP Relaxation
We can state the set cover problem as an integer program as follows

minimize Z cSTS (minimize the overall cost)
Ses

subject to Z s > 1 foralle e (cover every element at least once)
S:eeS
xg €{0,1} forall S €S (every set is either in the set cover or not)

We can relax the problem by exchanging the constraints g € {0,1} by 0 < xg < 1. (These are
the only constraints requiring integrality of the solution.) We get the following LP relaxation'

minimize E CcSxS

Ses

subject to Z rg > 1 forallec U
S:eeS
x5 >0 forall Se S

In the online problem, we know the variables and the objective function in advance. We
get to know one constraint at a time and we have to maintain a feasible solution and we are
not allowed to reduce the values of the variables. So the difficulty is that we do not know what
constraints will come later when we choose which variables to increase.

For the time being, let us only consider the fractional problem, that is, the problem without
the integrality constraints. We will first devise an algorithm to solve this problem online and
later on use this algorithm to also derive solutions to the integral problem.

"We could also include that x5 < 1 for all S but this will not change the optimal solution as values greater
than 1 do not make sense.

Algorithms and Uncertainty, Winter 2017/18 Lecture 3 (page 2 of 4)

2 LP Duality

The above linear program is a covering LP, that is, it has the form minc’z, s.t. Az > b, x > 0
for non-negative A, b, c. Let us call this LP the primal program.

Given the primal program, its dual is defined by max by, s.t. ATy < ¢, y > 0. So, for every
constraint in the primal program, we have a variable in the dual and vice versa.

Lemma 3.1 (Weak Duality). Let x and y be feasible solutions to the primal and dual program
respectively. Then c'z > bly.

Proof. We have bTy < (Az)Ty = 2T ATy < 2Tc =Tz O

The dual of the Set Cover LP relaxation is

maximize Z Ye
ecU

subject toz Ye < €8 forall S € S
ecS
Ye >0 forallee U

Example 3.2. Consider U = {1,2,3}, S = {{1,2},{1,3},{2,3}}, cs = 1 for all S € S.
The optimal set cover solution has cost 2 because we need to take two sets. However, setting
T{12} = T{13} = T{23} = % for all S € S is a feasible solution to the LP relazation of cost %
gt 1s optimal because setting y; = yo = ys = %, we also have a solution to the dual LP of cost

5. This means there cannot be a cheaper solution to the primal LP.

3 Algorithmic Approach

Our algorithm will use LP duality. Namely, we will not only maintain (feasible) primal solutions
z®) but also (possibly infeasible) dual solutions y®. Both start from z(® = 0 and y(© = 0.

Lemma 3.3. If for all times t

(a) The primal increase is bounded by « times the dual increase, that is

p _ ptt=1 < a(D(t) — D(t_l)) , where PO = T2® gng DO = bTy(t)

(b) %y(t) is dual feasible,
The the algorithm is afB-competitive.

Proof. First, observe that by a telescoping-sum argument, we have P®) = Zi,zl(P(t/) —
p(t’—l)) < OZZ§/:1(DW) — D(t’—l)) = aD®.

Let z* be an optimal offline solution. Then, by weak duality, we know c’z* > b’y for any
dual feasible y, in particular y = %y(t). So, cl'z* > %bTy(t).

Combined with P < aD® | we get ¢T'z® < a-bTy® < aBc’z*. This means exactly that
the online solution z(!) is within an a8 factor of the offline solution z*.]

When choosing () and y®), our primary goal is that they have similar objective-function
values so that Property (a) in Lemma 3.3 holds with a small «.

So, let us figure out what we would like to do. Suppose we are in step t. We observe a new
constraint Zl at;x; > by in the primal LP. In the dual, a new variable y; arrives.

Algorithms and Uncertainty, Winter 2017/18 Lecture 3 (page 3 of 4)

We have), awxl(»tfl) < by, otherwise we would not have to do anything. We will have to

increase some variables to get a feasible 0. Of course, z(!) will be more expensive than z(¢=1).

We reflect this additional cost in the value of yt(t), all other dual variables remain unchanged.

Let us slowly increase z starting from z(!~1) and simultaneously y; starting from 0. We do
this in infinitesimal steps over continuous time.

We are at any point in time for which still ", a; ;2; < b;. We increase x; by dx;. To account
for the increased cost, we increase 1y; by dy at the same time. The dual objective function
increases by b;dy this way. This is at most (>, a¢ ;x;)dy because), a; ;x; < be. Simultaneously,
the primal objective function increases by (>, a;idx;). If we set dx; = am(%)dy, then these
changes exactly match up.

Ideally, we would follow exactly this pattern. However, notice that we start from z(©) = 0,
so all increases would be 0. Therefore, let n > 0 be very small and set

da; = act’z (zi +m)dy -

1

This is a differential equation. We try a solution of the form z; = C1e“?¥ + C3. Then we
have % = Cy(x; — C3),s0 C3 = —n, Cy = xz(t_l) +n, Co = %l This way

atq (t) _
a:l(»t)—i-n:e e Yt (xgt 1)+?7>)

where y,gt) is the smallest value such that z(*) is a feasible solution to the first ¢ constraints of

the primal LP.

4 Algorithm for Fractional Online Set Cover

Let us now use the algorithmic approach above to design an algorithm for fractional online
set cover. Notation gets a little easier here because b; = 1 for all ¢t and a;; is either 0 or 1,
depending on whether the ¢-th element is contained in the i-th set.

For our algorithm, we set n = % and initialize all zg = 0. Whenever a new element e arrives,
we introduce the primal constraint) g...g2s > 1 and a dual variable y.. We initialize y, = 0
and update it as follows. While) ¢ .g2s < 1 do: For each S with e € S increase xg by

_ 1
drg = g(lBS + n)dye-
Theorem 3.4. The algorithm is O(logn)-competitive for fractional online set cover.

Proof. We will verify the conditions of Lemma 3.3 with o = 2 and 5 = In(n + 1).
We start by property (a). Consider the ¢-th step, let element e arrive in this step. We have

to relate P) — P(t=1) =S~ cs(:ng) — xg_l)) to D® — D=1 = 4 For set S such that e € S,
W _ -y _ [P dx
vy —xy = /0 a (e (

we have
O
o)) = [T (e (5 0))
(®)

Y —
For y <ye’, ecs <x£t Dy 77) < xet) + 1 because xg) + 7 is exactly the value that we reach for

()

y=u". So

yl)

/0 Cls (e% (:cff_l) + 77)) dy < /0 Cls (zgt) + 17) dy = Cls (mg) + n> y® -

Algorithms and Uncertainty, Winter 2017/18 Lecture 3 (page 4 of 4)

This way, we can bound the primal increase by

pPO_pt=1 < e~ (xff) + n) g =" 2y 4+ Yyl < 2y = 2(pW — D=1y |
Sees S S:eeS S:eeS

because) g..cg a:ét) = 1 (otherwise we would have increased variables by too much) and
ZS:eE.S'?7 <nn=1

Now, we turn to property (b). Consider a fixed S. Let element e arrive in step ¢. By our
algorithm if e € S then

ye = cs @y + 1) — cgn(zd +)

.) _ (t-1)
otherwise Ty =xg .

So, when computing) g ye, Wwe might as well take the sum over all 7" steps as follows

T (T)
_ Tg +N
E Yo = E (CS ln(xg) +1n) —cs ln(:z:g D4 n)) =cgln (*(go))

e€s t=1 Ty +n

Furthermore, xg)) > 0 because variables are never negative and :J:(ST) < 1 because it does not

make sense to increase variables beyond 1. So

1
> v <esin (*”) —csln(n+1) = fes .
n

e:e€S

References

e N. Buchbinder, J. Naor: The Design of Competitive Online Algorithms via a Primal-
Dual Approach. Foundations and Trends in Theoretical Computer Science 3(2-3): 93-263
(2009)

