
Algorithms and Uncertainty, Winter 2017/18 Lecture 2 (4 pages)

Online Paging

Instructor: Thomas Kesselheim

Today, we will consider a very classical problem in online algorithms called Paging. We have
a system with a large, slow memory and a small, fast memory (cache). In the large memory,
there are n pages stored, the small memory has space for only k � n pages. Our algorithm will
have to decide which pages to keep in the small memory.

In our model, this means that initially we start with a cache of k arbitrary pages. Our
algorithm is then presented a sequence of pages σ1, σ2, . . . ∈ {1, . . . , n}. If σt is not contained in
the cache at time t, a page fault occurs and our algorithm incurs a cost of 1. It then has fetch
σt from the slow memory and choose which one of the k pages in the cache it should replace.

Example 2.1. In this example, the cache has size k = 4 and there are n = 5 pages overall.

pages in cache page requested page evicted cost
1, 2, 3, 4 1 — 0
1, 2, 3, 4 5 4 1
1, 2, 3, 5 5 — 0
1, 2, 3, 5 4 2 1

Again, we will analyze this problem in competitive analysis. An algorithm is c-competitive
if we have

E [cost(ALG(σ))] ≤ c · cost(OPT(σ)) + b for any sequence σ (1)

for some constant b. (Note that we now have a minimization problem, therefore the inequality
is switched.)

1 Algorithm LRU

Our algorithm has to decide which page to evict in case of a page fault. Let us consider the
very natural strategy least recently used (LRU). Here, we evict the page from the cache that
has not been requested for the most number of rounds by now.

Theorem 2.2. LRU is k-competitive.

To show that LRU is k-competitive, we will devise an auxiliary algorithm 1-bit LRU, which
is underspecified because we do not define how to deal with ties. No matter how ties are broken,
it will be k-competitive and LRU will correspond to one particular tie-breaking rule.

• If the requested page is in the cache, mark it

• Else (not in cache), if there is some unmarked page in the cache, evict some unmarked
page and mark the new page

• Else (not in cache, no unmarked), unmark all pages, evict some unmarked page and mark
the new page

• Initialize with all pages marked

Lemma 2.3. 1-bit LRU is k-competitive for any way of breaking the ties.



Algorithms and Uncertainty, Winter 2017/18 Lecture 2 (page 2 of 4)

Proof. Divide time into phases. Each time the algorithm unmarks all pages, a new phase
starts. We will compare the cost incurred by the algorithm to the offline optimum in all phases
separately.

In every phase, the algorithm incurs cost at most k. This is because any eviction coincides
with a page being marked. In the entire phase, exactly k pages get marked.

We now show that the offline optimum has to incur cost 1 per phase except the last one.
To this end, consider an arbitrary phase and the subsequence that is defined by removing the
first request from this phase and adding the first request from the following phase. We claim
that the offline optimum incurs cost at least 1. Let j be the page requested at the beginning
of the phase, that is, right before the subsequence. We know that in the subsequence exactly k
other pages are requests because the phase ends as the k+ 1-st distinct page is requested since
its beginning. As j has to be in the cache when the subsequence starts, there has to be one
eviction.

j

Phase

Subsequence

Observe that LRU simply applies one particular tie-breaking rule to “evict some unmarked
page”. It is therefore k-competitive.

2 Lower Bound for Any Deterministic Algorithm

Next, we will prove a lower bound on the competitive ratio of any deterministic algorithm.
To this end, observe that Equation (1) has to hold for any sequence σ. If the algorithm is
deterministic, then σ1, . . . , σt fully determine the cache state after round t.

Therefore, the following perspective is equivalent to our model and helpful to give an im-
possibility result. We have a round-based game1, in which the algorithm and an adversary take
turns. The adversary always chooses the next request in the sequence, whereas the algorithm
chooses an action how to deal with this. The respective choices may depend on what both
players have done up to this point. The adversary’s goal is to make the algorithm perform as
poorly as possible with respective to the competitive ratio.

Theorem 2.4. There is no deterministic algorithm for the paging problem that is c-competitive
for c < k.

Proof. We consider a universe of k + 1 pages. Let A be an arbitrary deterministic algorithm
and let the initial state of the cache be arbitrary. We now define the sequence σ step by step.
Consider any point in time. There is always exactly one page that is not in the algorithm’s
cache. This is the page that the adversary will request. By this construction, the algorithm
incurs a cost of 1 in every single round. Therefore, in a sequence of length T , cost(ALG(σ)) = T .

We now have to argue that one could do on any sequence σ that the adversary presents.
Namely, we will show that cost(OPT(σ)) ≤ dT/ke. Split the sequence into blocks of k rounds.
We show that the offline optimum has cost at most 1 per block. Pretend that before the first
block, there is a block in which exactly the pages that are initially in the cache at the start of
the sequence.

1In game-theoretic terms, it is a zero-sum game.



Algorithms and Uncertainty, Winter 2017/18 Lecture 2 (page 3 of 4)

Consider any block. In this block, the pages that are requested are the same as in the
preceding block with at most one exception because there are only k+ 1 pages overall. OPT(σ)
can make sure that at the end of a block, its cache contains exactly the pages requested in this
block. If in the two blocks the same pages are requested, it can keep the cache as it is and will
have no page fault. Otherwise, it replaces the one page that is not requested in this block by
the one that is requested now but was not in the previous one.

It is now easy to verify that there is no c < k for which there is a b such that cost(ALG(σ)) ≤
k · cost(OPT(σ)) + b for all sequences σ.

3 A Randomized Algorithm

We now consider a randomized variant of 1-bit LRU. We follow the above template. If it says
“evict some unmarked page”, then we drawn one unmarked page uniformly at random.

Theorem 2.5. The randomized algorithm is Hk-competitive, where Hk =
∑k

`=1
1
k = Θ(log k)

is the k-th harmonic number.

To analyze the algorithm, observe that the tie-breaking, that is, which unmarked page is
evicted, does not affect how time divides into phases as described above. Also, the state of
the cache at the end of a phase dos not depend on the tie-breaking—it contains exactly the k
distinct pages requested in this phase. Therefore, both are independent of the randomization.

For phase i, let mi be the number of pages that are requested in phase i but not in phase
i − 1. We set m1 to be the number of pages that are requested in the first page but are not
initially in the cache.

Lemma 2.6. The cost of the offline optimum is at least 1
2

∑
imi.

Proof. Let OPTi denote the cost incurred by the offline optimum in the i-th phase. We claim
that

∑
i OPTi ≥ 1

2

∑
imi. It does not hold OPTi ≥ 1

2mi, therefore we have to be a bit more
clever here. We will use a potential function. Let Φi be the number of pages that are in the
cache of the offline optimum but not in the memory of LRU at the end of phase i. Let Φ0 = 0
because the online algorithm and the offline optimum start with the same cache.

We have OPTi ≥ mi − Φi−1. This is because LRU has exactly the pages requested in the
previous phase in its cache. There are mi missing that will be requested in this phase. The
offline optimum can have at most Φi−1 of them in its cache, so at least mi − Φi−1 are missing.

Furthermore, we have OPTi ≥ Φi. Note that at the end of the phase the algorithms’s cache
contains exactly the pages requested in this phase. Each of these pages was in the optimum’s
cache during this phase at some point but has potentially been evicted again. Φi is a lower
bound on the number of these evictions.

So, overall

∑
i

OPTi ≥
p∑

i=1

(
1

2
(mi − Φi−1) +

1

2
Φi

)

=
1

2

p∑
i=1

mi −
1

2

(
p−1∑
i=0

Φi +

p∑
i=1

Φi

)
=

1

2

p∑
i=1

mi −
1

2
(Φ0 + Φp) ≥

1

2

p∑
i=1

mi ,

because Φ0 = 0 and Φp ≥ 0.

Lemma 2.7. The algorithm has expected cost at most
∑

imiHk.



Algorithms and Uncertainty, Winter 2017/18 Lecture 2 (page 4 of 4)

Proof. There are mi pages requested in phase i that did not occur in the previous phase and
consequently k−mi pages that also occurred in the previous phase. In the last phase, it might
be even less than k −mi but this only helps us.

The cost incurred by the pages that did not occur in the previous phase is exactly mi. For
the others, let X1, . . . , Xk−mi

be the random variables such that X` is the cost due to the `th
page from the previous phase. The overall cost of phase i is therefore Ci = mi+X1+. . .+Xk−mi

.
We claim that E [X`] ≤ mi

k−`+1 . To observe why this is true, let us first consider X1. At
the beginning of this phase the requested page was in the cache. However, it might have been
evicted by the pages that were not requested in the previous phase. Up to this point, at most
mi new pages have been requested. They each evict one unmarked page from the cache. So
overall, the probability is at most mi

k that our page has been evicted.
More generally, for X`, the probability that is evicted only increases if me mark the pages

1, . . . , ` − 1. This means there are only unmarked k − ` + 1 pages, which can be used to fit in
the new pages. So, the probability is at most mi

k−`+1 that the page has been evicted.
This means that for phase i, we get an expected cost of

E [Ci] = E [mi +X1 + . . .+Xk−mi
] = mi +

mi

k
+ . . .+

mi

k −mi + 1
≤

k∑
`=1

mi

`
= miHk ,

and overall

E

[∑
i

Ci

]
=
∑
i

E [Ci] ≤
∑
i

miHk .

4 Discussion

In two lectures on competitive analysis, we have seen that it allows us to argue about why simple
strategies are reasonable in the presence of uncertainty. We were able to derive rather simple,
clean, and formal proofs. We used ideas of worst-case analysis. Namely, our guarantees hold
without any further assumptions on the input. One should remark here that this worst-case
perspective does not apply to the random bits used by the algorithm. This is because they
algorithm can control them whereas it does not have control over the sequence.

However, we have also seen deficiencies of competitive analysis. Most importantly, the
adversarial perspective is incredibly pessimistic. Deterministic algorithms only appear to be
worse than randomized ones because it is harder to fool them. Practical instances usually are
not designed to fool our algorithms.

References

• A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Chapters 3 and
4


