
An Efficient Implicit OBDD-Based Algorithm for

Maximal Matchings⋆

Beate Bollig1 and Tobias Pröger2

1 TU Dortmund, LS2 Informatik, Germany
2 ETH Zürich, Institut für Theoretische Informatik, Switzerland

Abstract. The maximal matching problem, i.e., the computation of a matching that
is not a proper subset of another matching, is a fundamental optimization problem
and algorithms for maximal matchings have been used as submodules for problems
like maximal node-disjoint paths or maximum flow. Since in some applications graphs
become larger and larger, a research branch has emerged which is concerned with the
design and analysis of implicit algorithms for classical graph problems. Inputs are
given as characteristic Boolean functions of the edge sets and problems have to be
solved by functional operations efficiently supported by the chosen data structure.
An OBDD is a well-known data structure for Boolean functions and sometimes ca-
pable to take advantage over the presence of regular substructures which may lead
to sublinear graph representations. As a result OBDD-based algorithms are used as a
heuristic approach to handle very large graphs. Here, an implicit OBDD-based max-
imal matching algorithm is presented that uses only a polylogarithmic number of
functional operations with respect to the number of vertices of the input graph. In
order to investigate the algorithm’s behavior on large and structured networks, it has
been analyzed on grid graphs and it has been shown that the overall running time
and the space requirement is also polylogarithmic.

1 Introduction

Since some modern applications require huge graphs, explicit representations by adjacency
matrices or adjacency lists may cause conflicts with memory limitations and even polynomial
time algorithms are sometimes not fast enough. As time and space resources do not suffice to
consider individual vertices and edges, one way out seems to be to deal with sets of vertices
and edges represented by their characteristic functions. Ordered binary decision diagrams,
denoted OBDDs, introduced by [6], are well suited for the representation and manipulation
of Boolean functions and sometimes capable to take advantage over the presence of regular
substructures which leads to sublinear graph representations. Therefore, a research branch
has emerged which is concerned with the design and analysis of so-called implicit or symbolic
algorithms for classical graph problems on OBDD-represented graph instances (see, e.g., [8,
9], [11], [15], [16, 17], and [21]). Implicit algorithms have to solve problems on a given graph
instance by efficient functional operations offered by the OBDD data structure. Here, a
functional operation is an operation that works on Boolean functions. Representing graphs
with regularities by means of data structures smaller than adjacency matrices or adjacency
lists seems to be a natural idea but for several graph problems an exponential blow-up from
input to output size is possible in the implicit setting ([1–3] and [16]). However, OBDD-based
algorithms are successful in many applications and it has been pointed out that worst-case
hardness results do not adequately capture the complexity of the problems on real-world

⋆ The first author is supported by DFG project BO 2755/1-1.

instances ([7]). Moreover, in practical applications, typically, a careful analysis of the problem
at hand reveals sufficient structure to limit the graphs under investigation to a restricted
class.

The design of efficient implicit algorithms requires new paradigms and techniques but
it has turned out that some methods known from the design of parallel algorithms are use-
ful, e.g., the technique of iterative squaring is similar to the path-doubling strategy. For
instance, it is well known that the transitive closure of a graph, i.e., all pairs of vertices
(u, v) in an input graph G for which there exists a path from u to v, can be computed
similarly as in parallel algorithm by O(log2 |V |) functional operations using iterative squar-
ing. One may remark that one has to be careful whether to use iterative squaring because
despite the improvement in the number of functional operations there can be intermediate
results of exponential size (with respect to the input length). Nevertheless, Sawitzki has
demonstrated that iterative squaring can also be useful in applications. The maximum flow
problem in 0-1 networks has been one of the first classical graph problems for which an
implicit OBDD-based algorithm has been presented and Hachtel and Somenzi were able to
compute a maximum flow for a graph with more than 1027 vertices and 1036 edges in less
than one CPU minute ([11]). To improve this algorithm Sawitzki has used iterative squaring
for the computation of augmenting paths by O(log2 |V |) functional operations ([15]). If the
maximum flow value is constant with respect to the network size, the algorithm performs
altogether a polylogarithmic number of operations. Both max flow algorithms belong to the
class of so-called layered-network methods but Sawitzki’s algorithm prevents breadth-first
searches by using iterative squaring and as a result overcomes the dependence on the depths
of the layered networks. In order to confirm the practical relevance of his algorithm he has
implemented both maximum flow algorithms and has shown that his algorithm outperforms
the algorithm of Hachtel and Somenzi for very structured graphs.

The maximal matching problem, i.e., the computation of a matching that is not a proper
subset of another matching, is a fundamental optimization problem and algorithms for max-
imal matchings have been used in some maximal node-disjoint paths or maximum flow
algorithms (see, e.g., [10]). Using an efficient degree reduction procedure, the first opti-
mal parallel algorithm for maximal matchings has been presented by [13]. It runs in time
O(log3 |V |) using O((|E| + |V |)/ log3 |V |) processors on bipartite graphs G = (V, E) and is
optimal in the sense that the time processor product is equal to that of the best sequential
algorithm. The main result of our paper is an efficient implicit algorithm for the computa-
tion of maximal matchings. Here, we make use of the algorithm presented by [13] but for
the implicit setting also new ideas are necessary.

Theorem 1. A maximal bipartite matching in an implicitly defined graph G = (V, E) can

be implicitly computed by O(log4 |V |) functional operations on Boolean functions over a log-

arithmic number of Boolean variables. For general graphs O(log5 |V |) functional operations

are sufficient.

Note, that our aim is not to achieve new algorithmic techniques for explicit graph rep-
resentations but to demonstrate the similarity of paradigms in the design of parallel and
implicit algorithms that can also be used as building blocks for the solution of other com-
binatorial problems on one hand and on the other hand to develop efficient algorithms for
large structured graphs.

The similarity between implicit and parallel algorithms has also been demonstrated by
the following result proved by [17, 18]. A problem can be solved in the implicit setting
with a polylogarithmic number of functional operations on a logarithmic number of Boolean
variables (with respect to the number of vertices of the input graph) if and only if the problem

2

is in NC, the complexity class that contains all problems computable in polylogarithmic
time with polynomially many processors. Nevertheless, this structural result does not lead
directly to efficient implicit algorithms. Since a problem in NC can be characterized by so-
called logarithmic space-uniform circuits of polynomial size and polylogarithmic depth, an
implicit algorithm has been generated by simulating the logarithmic space-uniform Turing
machine which computes the corresponding circuit followed by a simulation of this circuit.
During the simulation Boolean functions are used whose OBDD size can almost be cubic
with respect to the circuit size. Therefore, the resulting implicit algorithms are presumably
not the most efficient ones to solve the corresponding problems in NC.

The rest of the paper is organized as follows. In Section 2 we define some notation and
review some basics concerning OBDDs and functional operations, implicit graph represen-
tations and matchings, as well as important Boolean functions in the design and analysis of
implicit graph algorithms. Section 3 contains the main result, an implicit algorithm for the
maximal matching problem that uses only a polylogarithmic number of functional operations
with respect to the number of vertices of the input graph. Since most operations on OBDDs
require time and space proportional to the sizes of the operands, the number of functional
operations is only a rough measure for the efficiency of an implicit algorithm. Therefore,
we demonstrate in Section 4 that there exists graphs for which our implicit algorithm is
enormously more efficient than the traditional algorithms. Finally, we finish the paper with
some concluding remarks.

2 Preliminaries

In order to make the paper self-contained we briefly recall the main notions we are dealing
with in this paper.

2.1 OBDDs and functional operations

OBDDs are a very popular dynamic data structure in areas working with Boolean func-
tions, like circuit verification or model checking. (For a history of results on binary decision
diagrams see, e.g., [20]).

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable ordering

π on Xn is a permutation on {1, . . . , n} leading to the ordered list xπ(1), . . . , xπ(n) of the

variables. A π-OBDD on Xn is a directed acyclic graph G = (V, E) whose sinks are labeled

by the Boolean constants 0 and 1 and whose non-sink (or decision) nodes are labeled by

Boolean variables from Xn. Each decision node has two outgoing edges, one labeled by 0 and

the other by 1. The edges between decision nodes have to respect the variable ordering π,

i.e., if an edge leads from an xi-node to an xj-node, then π−1(i) < π−1(j) (xi precedes xj

in xπ(1), . . . , xπ(n)). Each node v represents a Boolean function fv ∈ Bn, i.e., fv : {0, 1}n →
{0, 1}, defined in the following way. In order to evaluate fv(b), b ∈ {0, 1}n, start at v. After

reaching an xi-node choose the outgoing edge with label bi until a sink is reached. The label

of this sink defines fv(b). The size of a π-OBDD G, denoted by |G|, is equal to the number

of its nodes. A π-OBDD of minimal size for a given function f and a fixed variable ordering

π is unique up to isomorphism. A π-OBDD for a function f is called reduced if it is the

minimal π-OBDD for f . The π-OBDD size of a function f , denoted by π-OBDD(f), is the

size of the reduced π-OBDD representing f . The OBDD size of f is the minimum of all

π-OBDD(f).

3

Sometimes it is useful to have the notion of OBDDs where there are only edges between
nodes labeled by neighboring variables, i.e., if an edge leads from an xi-node to an xj-node,
then π−1(i) = π−1(j) − 1.

Definition 2. An OBDD on Xn is complete if all paths from the source to one of the sinks

have length n. The width of a complete OBDD is the maximal number of nodes labeled by

the same variable.

Let f be a Boolean function on the variables x1, . . . , xn. The subfunction f|xi=c, 1 ≤ i ≤ n
and c ∈ {0, 1}, is defined as f(x1, . . . , xi−1, c, xi+1, . . . , xn). It is well known that the size
of an OBDD representing a function f that depends essentially on n Boolean variables (a
function f depends essentially on a Boolean variable z if f|z=0 6= f|z=1) may be different for
different variable orderings and may vary between linear and exponential size with respect
to n. In the following a variable ordering π is sometimes identified with the corresponding
ordering xπ(1), . . . , xπ(n) of the variables if the meaning is clear from the context. The size of
the reduced π-OBDD representing f is described by the following structure theorem proved
by [19].

Theorem 2. The number of xπ(i)-nodes of the minimal π-OBDD for f is the number of

different subfunctions f|xπ(1)=a1,...,xπ(i−1)=ai−1
, a1, . . . , ai−1 ∈ {0, 1}, that essentially depend

on xπ(i). The number of xπ(i)-nodes of the minimal complete π-OBDD for f is the number

of different subfunctions f|xπ(1)=a1,...,xπ(i−1)=ai−1
, a1, . . . , ai−1 ∈ {0, 1}.

Now, we briefly describe a list of important operations on data structures for Boolean
functions and the corresponding time and additional space requirements for OBDDs (for a
detailed discussion see, e.g., [20]). In the following let f and g be Boolean functions in Bn

on the variable set Xn = {x1, . . . , xn} and Gf and Gg be π-OBDDs for the representations
of f and g, respectively.

– Negation: Given Gf , compute a π-OBDD for the function f ∈ Bn. This can be done in
time O(1).

– Replacement by constant: Given Gf , an index i ∈ {1, . . . , n}, and a Boolean constant
ci ∈ {0, 1}, compute a π-OBDD for the subfunction f|xi=ci

. This can be done in time
O(|Gf |) and the π-OBDD for f|xi=ci

is not larger than Gf .
– Minimization: Given a π OBDD Gf , compute the reduced π-OBDD for f . This can be

done in time and space O(|Gf |).
– Equality test: Given Gf and Gg, decide, whether f and g are equal. This can be done

in time O(|Gf | + |Gg|).
– Satisfiability count: Given Gf , compute |f−1(1)|. This can be done in time O(|Gf |).
– Synthesis: Given Gf and Gg and a binary Boolean operation ⊗ ∈ B2, compute a π-

OBDD Gh for the function h ∈ Bn defined as h := f ⊗ g. This can be done in time and
space O(|Gf | · |Gg|) and the size of Gh is bounded above by O(|Gf | · |Gg|).
Let G∗

h be the graph that consists of the nodes in the product graph of Gf and Gg

reachable from the node representing the function h. The computation of Gh can be
done in time O(|G∗

h| log |G∗
h|) and space O(|G∗

h|).
– Quantification: Given Gf , an index i ∈ {1, . . . , n}, and a quantifier Q ∈ {∃, ∀}, compute

a π-OBDD Gh for the function h ∈ Bn defined as h := (Qxi)f , where (∃xi)f :=
f|xi=0 ∨ f|xi=1 and (∀xi)f := f|xi=0 ∧ f|xi=1. The computation of Gh can be realized by
two replacements of constants and a synthesis operation. This can be done in time and
space O(|Gf |2).

4

In the rest of the paper quantifications over k Boolean variables (Qx1, . . . , xk)f are denoted
by (Qx)f , where x = (x1, . . . , xk).

The following result proved by [17] has turned out to be helpful in the analysis of implicit
graph algorithms.

Lemma 1. Let f ∈ Bn be a function on the variable set Xn = {x1, . . . , xn}, X ⊆ Xn,

Q ∈ {∃, ∀}, and Gf be a complete OBDD representing f with respect to a variable ordering π.

The function h is defined by (QX)f , which means the function obtained from f by quantifying

all variables in X. The width of the minimal complete π-OBDD Gh for h is bounded by 2w,

where w is the width of Gf . Gh can be computed in time O(|X |n22w log(n22w)) and space

O(n22w).

Sometimes it is useful to reverse the edges of a given graph. Therefore, we define the
following operation (see, e.g., [16]).

Definition 3. Let ρ be a permutation on {1, . . . , k} and f ∈ Bkn be defined on Boolean

variable vectors x(1), . . . , x(k) of length n. The argument reordering Rρ(f) ∈ Bkn with respect

to ρ is Rρ(f)(x(1), . . . , x(k)) = f(x(ρ(1)), . . . , x(ρ(k))).

Given a π-OBDD Gf representing f a π-OBDD for the function Rρ(f) can be computed
by renaming the variables followed by at most (k − 1)n so-called jump-up operations, where
a variable jumps to another position in the variable ordering. A jump-up operation can be
realized by two replacements of constants followed by a synthesis step (see, e.g., [4]). A k-
interleaved variable ordering on the k variable vectors xi = (xi

n, . . . , xi
1), 1 ≤ i ≤ k, denoted

by πτ
k,n is defined in the following way:

πτ
k,n =

(

x
(1)
τ(1), . . . , x

(k)
τ(1), x

(1)
τ(2), . . . , x

(k)
τ(2), . . . , x

(k)
τ(n)

)

,

where τ ∈ Σn, the set of all permutations on {1, . . . , n}. In the design and analysis of implicit
graph algorithms it is very common to use interleaved variable orderings mainly because of
two reasons. The first one is that some important Boolean function can be represented in
small size according to such an ordering and the second one is that an argument reordering
operation does not lead to a blow-up in the representation size of the function if k is a
constant which means independent of n. To be more precise, in this case it is not difficult
to show that the size for the result of the reordering procedure is only a factor of 2k larger
than the size of the input OBDD. If we consider complete OBDDs for f and Rρ(f) and
interleaved variable orderings, the width of the OBDD for Rρ(f) obtained by the reordering
procedure is at most by a factor of 2k−1 larger than the width of the OBDD for f . (These
results can be shown by the proof of Theorem 2 presented by [4].)

Altogether, the negation, replacement by constant, minimization, equality test, satisfi-
ability count, and synthesis are functional operations. The quantification over k variables
can be realized by 3k functional operations and the argument reordering over k vectors of
length n by 3(k − 1)n functional operations.

The test whether a Boolean function f represented by an OBDD Gf is not the constant
function 0, in other words the satisfiability test, can be done in different ways. One possibility
is to make an equality test between Gf and an OBDD for the constant function 0 that consists
only of the 0-sink. Another one is to perform the operation satisfiability count. Both can be
done in time and space O(|Gf |).

5

2.2 OBDD-based graph representations and matching problems

Let G = (V, E) be a graph with N vertices v0, . . . vN−1 and |z|2 :=
∑n−1

i=0 zi2
i, where

z = (zn−1, . . . , z0) ∈ {0, 1}n and n = ⌈log N⌉. Now, E can be represented by an OBDD for
its characteristic function, where x, y ∈ {0, 1}n and

χE(x, y) = 1 ⇔ (|x|2, |y|2 < N) ∧ (v|x|2
, v|y|2

) ∈ E.

(For the ease of notation we omit the index 2 in the rest of the paper.) Undirected edges
are represented by symmetric directed ones. In the rest of the paper we assume that N
is a power of 2 since it has no bearing on the essence of our results. Furthermore, we do
not distinguish between vertices of the input graph and their Boolean encoding since the
meaning is clear from the context. It is well known that for every variable ordering π the size
of the reduced π-OBDD for a given function f ∈ Bn is upper bounded by (2 + o(1))2n/n
(see, e.g., [5]). Moreover, it is not difficult to prove that the size is also upper bounded
by O(n · min(|f−1(1)|, |f−1(0)|)), where |S| denotes the cardinality of a set S and f−1(1)
(f−1(0)) is the set of the 1-inputs (0-inputs) for f . The idea is to show that there cannot
be more than |f−1(1)| or |f−1(0)| nodes labeled by the same variable in an OBDD for
f since there are at most min(|f−1(1)|, |f−1(0)|) different subfunctions which depend on
the same variable. Therefore, the characteristic function XE of an edge set E ⊆ V × V
can be represented by OBDDs of size O(min(|V |2/ log |V |, |E| log |V |)). To be more precise,
a reduced OBDD representing XE with respect to an arbitrary variable ordering has size
O(min(|V |2/ log |V |, |E| log |V |)).

A graph G = (V, E) is bipartite, if V can be partitioned into two disjoint nonempty sets
U and W , such that for all edges (u, w) ∈ E it holds u ∈ U and w ∈ W or vice versa.
The distance between two edges on a (directed) path is the number of edges between them.
The distance between two vertices on a (directed) path is the number of vertices between
them plus 1. The degree of a vertex v in G is the number of edges in E incident to v. A
matching in an undirected graph G = (V, E) is a subset M ⊆ E such that no two edges of
M are adjacent. M is a maximum matching if there exists no matching M ′ ⊆ E such that
|M ′| > |M |. A matching M is maximal if M is not a proper subset of another matching.
Given a matching M a vertex v is matched if (v, w) ∈ M for some w ∈ V and free otherwise.

In the implicit setting the maximum (maximal) matching problem is the following one.
Given an OBDD for the characteristic function of the edge set of an undirected input graph
G, the output is an OBDD that represents the characteristic function of a maximum (max-
imal) matching in G.

2.3 Important Boolean functions for the design and analysis of OBDD-based

graph algorithms

For implicit computations some Boolean functions are helpful. The equality function EQn

is defined on two n-bit inputs x and y and computes 1 iff |x| = |y|. NEQ is the negated
equality function. It is easy to see that both functions can be represented in linear size with
respect to the number of Boolean variables if the variables with the same significance are
tested one after another.

Since sometimes a vertex (or an edge) has to be chosen out of a given set of vertices
(or edges), several priority functions Π≺ have been defined in the implicit setting (see, e.g.,
[11, 15]). We define Π≺(x, y, z) = 1 iff y ≺x z, where ≺x is a total order on the vertex set
V and x, y, z are vertices in V . In the following we only use a very simple priority function
independent of the choice of x, where Π≺(x, y, z) = 1 iff |y| < |z|. It is easy to show that

6

Π≺ can be represented by OBDDs of linear size with respect to variable orderings, where yi

and zi are tested one after another.
The equality, nonequality, and priority function are special cases of a class of functions

called multivariate threshold and modulo functions introduced by [21].

Definition 4. Let Xk,n be the set of variables xi
j, where 1 ≤ i ≤ k and 0 ≤ j ≤ n − 1, and

xi the vector of the n variables (xi
n−1, . . . , xi

0). A Boolean function f ∈ Bkn defined on the

variable set Xk,n is called k-variate threshold function, if there exist a threshold T ∈ Z and

weights w1, . . . , wk ∈ Z such that

f(x1, . . . , xk) = 1 ⇔

k
∑

i=1

wi · |xi| ≥ T.

Let w := max(|w1|, . . . , |wk|). The set of k-variate threshold functions on Xk,n is denoted by

T
w
k,n.

A Boolean function g ∈ Bkn defined on the variable set Xk,n is called k-variate modulo

M function, if there exist a constant C ∈ Z and weights w1, . . . , wk ∈ Z such that

g(x1, . . . , xk) = 1 ⇔

k
∑

i=1

wi · |xi| ≡ C mod M.

The set of k-variate modulo M functions on Xk,n is denoted by M
M
k,n.

A function f ∈ Bn can be decomposed into m functions in a class C of functions on n
Boolean variables, if there exist a formula F on m variables and f1, . . . , fm ∈ C such that
f = F (f1, . . . , fm). Any function decomposable into a constant number of threshold and
modulo functions with respect to constant weights has a small OBDD size. More precisely,
the following lemma has been shown by [21].

Lemma 2. Let f = F (f1, . . . , fm) for a formula F of size s and f1, . . . , fm ∈ T
w
k,n ∪ M

M
k,n.

The πk,n-OBDD size of f is O(Lskn), where πk,n = (x1
0, x2

0, . . . , xk
0 , x1

1, . . . , xk
1 , . . . , xk

n−1)
and L = max(4kw + 5, M).

Finally, the following result proved by [17] shows that a constant number of operations on
functions representable by OBDDs of small width can be done efficiently.

Lemma 3. Let f ∈ Bkn be defined on variable vectors x1, . . . , xk ∈ {0, 1}n and Gf be a

complete OBDD representing f with respect to the variable ordering

πk,n = (x1
0, x2

0, . . . , xk
0 , x1

1, . . . , xk
1 , . . . , xk

n−1).

Furthermore, let S be a sequence of a constant number of functional operations and quan-

tifications over variable vectors xi, 1 ≤ i ≤ k, applied on f , functions in T
w
k,n, where w is

independent of k and n, and intermediate functions generated by the current prefix of S. The

width of the minimal complete πk,n-OBDD for each function generated by S only depends

on the width wf of Gf .

3 The Maximal Matching Algorithm

In this section we present an implicit algorithm for the maximal bipartite matching problem
and prove Theorem 1. The algorithm can easily be extended for general graphs. The idea is

7

to use the parallel algorithm for the computation of maximal matchings on explicitly defined
input graphs presented by [13] and to adapt this algorithm to the implicit setting. In the
parallel setting more or less only a high-level description of the algorithm is given. Moreover,
we have to add more ideas because we cannot access efficiently single vertices or edges in
the implicit setting.

The algorithm findMaximalBipartiteMatching is simple. Step-by-step a current match-
ing is enlarged by computing a matching in the subgraph of G = (V, E) that consists only of
the edges that are not incident to the current matching. The key idea is an algorithm match

that computes a matching M ′, M ′ ⊆ E, adjacent to at least a fraction of 1/6 of the edges in
the input graph for match. After removing these edges from the input graph the procedure
is repeated. Therefore, after O(log |V |) iterations the considered subgraph is empty and the
current matching is obviously a maximal matching in G.

Algorithm 1 findMaximalBipartiteMatching

Input: χE(x, y)

(1) ⊲ Initialize. Start with the empty matching.

M(x, y)← 0
(2) while χE(x, y) 6= 0 do

(3) ⊲ Compute a matching M ′.

M ′(x, y)← match(χE(x, y))
(4) ⊲ Delete the edges incident to a matched vertex with respect to M ′.

INCNODE(x)← (∃y)(M ′(x, y))
χE(x, y)← χE(x, y) ∧ INCNODE(x) ∧ INCNODE(y)

(5) ⊲ Add the edges from M ′ to M.

M(x, y)←M(x, y) ∨M ′(x, y)
(6) return M(x, y)

The algorithm match makes use of another algorithm halve that halves approximately
the degree of each vertex in a bipartite graph. The idea is to compute an Euler partition of
the input graph such that the graph is decomposed into edge-disjoint paths. Each vertex of
odd (even) degree is the endpoint of exactly 1 (0) open path. By two-coloring the edges on
each path in the Euler partition and deleting all edges of one color, the degree of each vertex
in the input graph is approximately halved. Here, we use the fact that bipartite graphs have
no cycles of odd length. Therefore, for each path, where a vertex v is not an endpoint, and
for each cycle, the number of edges incident to v colored by one of the two colors is equal
to the number of edges colored by the other one. In fact in the algorithm halve we only
use the color red and delete all red edges after the coloring. A precondition of the parallel
algorithm halve is that for each vertex its incident edges have been paired ([13]). Here, we
present a new algorithm called calculatePairing which computes implicitly a pairing of
the edges with O(log2 |V |) functional operations. This algorithm together with the degree
reduction procedure in halve can possibly be used as building blocks for the solution of other
combinatorial problems in the implicit setting. We assume that there is for each vertex an
ordering on its incident edges given by a priority function (see Section 2). In the first step
of the algorithm calculatePairing for each vertex the neighborhood of its incident edges
is determined. Almost all edges have two neighbors with respect to one of its endpoints (all
but the first and the last one). In order to compute a symmetric pairing every other edge

8

incident to the same vertex is colored red. This is realized by an indicator function called RED.
Afterwards, two neighboring edges (x, y), (x, z) are paired iff (x, y) is red, i.e., RED(x, y) = 1,
and (x, y) has a higher priority than (x, z), i.e., Π≺(x, y, z) = 1. Therefore, each edge has at
most one chosen neighbor with respect to one of its endpoints and at most one of the edges
incident to the same vertex is not paired. The output of calculatePairing is a function
which depends on three vertex arguments x, y, and z and whose function value is 1 iff y and
z are two vertices adjacent to x which have been paired. Therefore, the function is symmetric
in the second and third argument. For the computation of the pairing we determine for each
edge its position with respect to all edges incident to the same vertex according to a priority
function. This procedure is similar to the well-known list ranking algorithm: given a linked
list for each member of the list the number of its position in the list has to be calculated
(for a nice introduction into design and analysis of parallel algorithms see, e.g., [12]). In our
case we are only interested in whether the number of the position of an edge according to a
priority function is odd or even.

Algorithm 2 calculatePairing

Input: χE(x, y)

(1) ⊲ Determine the neighborhood of the edges.

ORDER(x, y, z)← χE(x, y) ∧ χE(x, z) ∧Π≺(x, y, z) ∧ (∃ξ)(χE(x, ξ) ∧Π≺(x, y, ξ) ∧Π≺(x, ξ, z))
(2) ⊲ Compute the distance between edges incident to the same vertex using iterative

squaring.

DIST0(x, y, z)← ORDER(x, y, z)
for i = 1, 2, ..., log |V | do

DISTi(x, y, z)← (∃ξ)(DISTi−1(x, y, ξ) ∧ DISTi−1(x, ξ, z))
(3) ⊲ Color for each vertex its incident edges alternately.

RED(x, y)← χE(x, y) ∧ (∃ξ)(χE(x, ξ) ∧Π≺(x, ξ, y))
for i = 1, 2, ..., log |V | do

RED(x, y)← RED(x, y) ∨ (∃ξ)(RED(x, ξ) ∧ DISTi(x, ξ, y))
(4) ⊲ Select only edge pairs ((x, y), (x, z)), where the first edge is red.

return (ORDER(x, y, z) ∧ RED(x, y)) ∨ (ORDER(x, z, y) ∧ RED(x, z))

Lemma 4. The algorithm calculatePairing computes for all vertices a pairing of its in-

cident edges respectively with O(log2 |V |) functional operations.

Proof. The correctness of calculatePairing follows from the following observations: the
function ORDER(x, y, z) computes the output 1 iff y and z are adjacent to the vertex x, the
edge (x, y) is smaller than the edge (x, z) according to the chosen priority function, and
there is no edge between (x, y) and (x, z) (in the order defined by the priority function).
In step 2 the function DISTi(x, y, z) computes 1 iff the distance, i.e., the number of edges
between the edge (x, y) and (x, z) with respect to the priority function, is 2i − 1. Afterwards
for each vertex the first of its incident edges according to the priority function is colored red
and then all edges which have an odd distance to the first one are also colored red. Now,
the output of calculatePairing is a function on three vertex arguments x, y and z, where
the value is 1 iff the edges (x, y) and (x, z) are neighbored and the first one with respect to
the priority function is red.

The most time consuming steps during calculatePairing are (2) and (3), where the
position of the edges and the coloring of the incident edges are calculated. Traversing the

9

incident edges of a vertex needs O(log |V |) iterations each using O(log |V |) operations for
the quantification of the O(log |V |) variables. 2

Algorithm 3 halve

Input: χE(x, y)

(1) ⊲ Compute the successor relation.

PAIRING(x, y, z)← calculatePairing χE(x, y)
SUCC(x, y, z)← PAIRING(y, x, z)

(2) ⊲ Compute distance and reachability relations on the directed edges defined by

the successor relation.

i← 0
DIST0(v, w, x, y)← EQ(w, x) ∧ SUCC(v, w, y)
REACHABLE(v, w, x, y)← (EQ(v, x) ∧ EQ(w, y)) ∨ (EQ(w, x) ∧ SUCC(v, w, y))
repeat

i← i + 1
REACHABLE′(v, w, x, y)← REACHABLE(v, w, x, y)
REACHABLE(v, w, x, y)← REACHABLE(v, w, x, y) ∨

(∃ξ, θ)(REACHABLE(v, w, ξ, θ) ∧ REACHABLE(ξ, θ, x, y))
DISTi(v, w, x, y)← (∃ξ, θ)(DISTi−1(v, w, ξ, θ) ∧ DISTi−1(ξ, θ, x, y))

until REACHABLE′(v, w, x, y) = REACHABLE(v, w, x, y)
(3) ⊲ On each path, color an appropriate edge red.

RED(x, y)← χE(x, y) ∧ (∀ξ, θ)(REACHABLE(ξ, θ, x, y) ∨ EQ(ξ, x) ∨Π≺(x, x, ξ))∧
(∀θ, ξ)(REACHABLE(θ, ξ, y, x) ∨EQ(θ, x) ∨Π≺(x, x, θ))∧
(∀ξ)((REACHABLE(x, y, ξ, x) ∧ REACHABLE(ξ, x, x, y)) ∨Π≺(x, y, ξ))

RED(x, y)← RED(x, y) ∨ RED(y, x)
(4) ⊲ Color the edges alternately.

for j = 1, 2, ..., i do

RED(x, y)← RED(x, y) ∨ (∃ξ, θ)(RED(ξ, θ) ∧ DISTj(ξ, θ, x, y))
(5) ⊲ Delete the red edges.

return χE(x, y) ∧ RED(x, y) ∧ RED(y, x)

The pairing computed by calculatePairing is symmetric and it is used by the algorithm
halve to define (directed) paths in the (undirected) input graph. An edge (y, z) is a successor
edge of an edge (x, y) and SUCC(x, y, z) = 1 iff the edges (y, z) and (y, x) are paired according
to calculatePairing (see Figure 1 for an illustration of the calculated pairing and the
successor relation SUCC).

Using this successor relation SUCC the undirected input graph is decomposed into directed
edge-disjoint paths. Since the pairing is symmetric, (y, x) is also a successor of (z, y). There-
fore, for each directed path from a vertex u′ to a vertex u′′ defined by the successor relation
SUCC, there exists also a directed path from u′′ to u′. This property is important in order to
guarantee that a coloring of the directed edges can be used for an appropriate coloring of
the undirected edges in the input graph. For each directed path in the decomposition every
other edge is colored red and a directed edge (u, v) is red iff the directed edge (v, u) is red.
Therefore, for each pair of (undirected) edges computed by calculatePairing exactly one
edge is red and by deleting the red edges the degree of each vertex is approximately halved.
A crucial step, which is new in the implicit setting, is the choice of the first edges that are
colored red on a directed path, because all directed paths are investigated simultaneously,

10

y x

z

. . .

y x

z

y x

z

Fig. 1. The relation between the calculated pairing and the successor relation SUCC: the vertices
x and z are adjacent to y and paired according to calculate pairing, therefore, the directed edge
(y, z) is the successor edge of the directed edge (x, y) and (y, x) the successor edge of (z, y).

i.e., for each directed path from a vertex s to a vertex t the directed path from t to s is
considered at the same time. We have to avoid the situation that two edges (x, y) and (x, z),
where (x, y) is a directed edge on a directed path from a vertex s to a vertex t and (x, z) a
directed edge on the path from t to s, are colored red at the same time, because otherwise
all edges from s to t and from t to s would be red after the coloring procedure. (See Figure
2 for a situation that has to be avoided.) For this reason we ensure that in the beginning we
color either directed edges on the path from s to t or on the path from t to s.

s . . . z x y . . . t

Fig. 2. The following situation has to be avoided: if (x, z) and (x, y) are both colored red in the
beginning, the directed edges (z, x) and (x, y) which are on the same directed path are both colored
red in the end of step (3) in halve. The coloring procedure in step (4) would lead to a coloring of
all edges on the directed path from s to t (and vice versa), because the distance between an incoming
and an outgoing edge in a bipartite graph is odd. (Note, that the edge (z, x) can also be behind the
edge (x, y) on the directed path from s to t.)

For this reason an edge relation called Reachable is used, where REACHABLE(v, w, x, y) is 1
iff there exists a directed path from the edge (v, w) to the edge (x, y) defined by the successor

11

relation SUCC. Due to the symmetry of SUCC the relation REACHABLE is also symmetric in the
following way: iff REACHABLE(v, w, x, y) = 1 then REACHABLE(y, x, w, v) = 1. Therefore, using
REACHABLE it is also possible to determine the predecessors of a directed edge. Now, the first
red edges on a directed path are the edges with the highest priority: for each directed path
the smallest vertex v on the path according to a priority function together with a successor
u is chosen if there exists no predecessor of v which has a higher priority than u according to
the chosen priority function. This procedure ensures that either for a directed path starting
from a vertex s and ending in a vertex t an edge (v, u) is chosen or for the directed path from
t to s. Afterwards an edge (u, v) is colored red iff the edge (v, u) is red. Next, each edge on
a directed path for which the distance to one of the first red edges on the path is odd is also
colored red and all red edges are deleted from the input graph. Note, that it is possible for a
directed path that more than one edge is chosen in the beginning but these edges have the
same starting point, therefore the distance between these edges is even because the input
graph is bipartite such that no problem occurs.

Lemma 5. Let d(v) and d′(v) denote the degree of a vertex v in the graph given by χE(x, y)
before and after running procedure halve on χE(x, y). Then d′(v) ∈ {⌊d(v)/2⌋, ⌈d(v)/2⌉}.

The algorithm halve uses O(log2 |V |) functional operations.

Proof. For the number of functional operations step (2) and step (4) are the most expensive
ones. The graph is traversed via iterative squaring in the second step. Since the length of a
path is O(|E|), the number of iterations is O(log |E|) = O(log |V |), and the quantification
over the Boolean variables that encode an edge can also be done using O(log |V |) operations
(O(1) functional operations for the quantification of each variable). The number of functional
operations in step (4) can be calculated in a similar way.

For the correctness of the algorithm halve step (3) is the most interesting one. The
directed paths according to the successor relation SUCC are edge-disjoint but not vertex
disjoint. In step (3) for each directed path according to the successor relation at least one
edge is carefully chosen and colored red. The first condition ensures that only edges that
belong to the input graph can be chosen. The second and third requirements guarantee that
a first red edge is incident to the vertex x with the highest priority on the path. The fourth
condition ensures that two arbitrary edges incident to x that are on the same directed path
and have an even distance are not both colored red. This condition is sufficient, we do not
have to choose only the neighbor of x which has the highest priority because we color the
edges afterwards alternately and edges whose distance is odd get the same color anyway.
Together with our considerations above we are done. 2

The idea for the correctness of match is that a (directed) subgraph P (x, y) of the input
χE(x, y) is computed for which each vertex has indegree and outdegree at most 1. It consists
only of vertex-disjoint open simple paths and trivial cycles. Therefore, the subgraph can be
seen as the union of two matchings. By choosing the matching which is the larger one we
are done. For this reason we color each path in P (x, y) alternately and we remove the edges
that are not red. Since the paths are vertex-disjoint the coloring is easier than the coloring
of the edges in the algorithm halve. In fact we color the vertices and not the edges. We
choose for each directed simple path the first vertex and color afterwards all vertices for
which the distance to the first one is even. Then we choose the (directed) edges (x, y) iff the
vertex x is red. Finally, we traverse the computed directed subgraph into the corresponding
undirected one.

The directed subgraph P is computed in the following way. In each iteration the vertices
with degree 1 are determined. For each vertex x adjacent to vertices with degree 1 in the

12

v

u

v′

u′

y

x

��

�

Fig. 3. A simplified situation for an edge (u, v) not incident to the computed matching in match:
the edge (u, v) is canceled during halve and the last edges incident to u and v are deleted in step
(5) of match.

remaining graph one of these vertices y is chosen according to a priority function and (x, y)
is added to P . Afterwards all edges incident to vertices with degree 1 are deleted and the
degree of all vertices is (approximately) halved. Note, that during the computation an edge
(x, y) in P can be eliminated later on if x gets another partner that has a higher priority
than y. At any time each vertex x has at most one partner.

It can be shown that at the beginning of step (8) in match at least 1/3 of the input edges
are incident to edges defined via P (x, y). The intuition is the following one. An edge (u, v)
is not incident to the computed matching iff the edge (u, v) is deleted during the algorithm
halve and the last edges (u, u′) and (v, v′) incident to u and v during the while loop are
eliminated in step (5) of match because u′ and v′ are at the same time adjacent to vertices
x and y which have degree 1 and are chosen as partners in the respective iteration of the
while loop. (See Figure 3 for a simplified illustration of the situation.) As a consequence
we can conclude that the degree of u′ and v′ is (approximately) at least twice the degree
of u and v in the input graph because Lemma 5 ensures that the degree of each node is
(almost) regularly halved in each iteration. Therefore the output of the algorithm match is
a matching incident to at least 1/6 of the input edges.

Lemma 6. The algorithm match implicitly computes a matching in an implicitly defined

input graph G = (V, E) incident to at least 1/6 of the edges in E. It needs O(log3 |V |)
functional operations.

Proof. There are O(log |V |) iterations of the while loop, each of them costs O(log2 |V |)
functional operations. The algorithm halve is the dominating step during the while loop
of match. Therefore, O(log3 |V |) functional operations are sufficient. The correctness follows
from our considerations above. (See also [13].) 2

Altogether, we have proved that the algorithm findMaximalBipartiteMatching uses
O(log4 |V |) functional operations for the computation of a maximal matching in an implicitly
defined input graph G = (V, E). Adapting the ideas presented for the decomposition of
general graphs into a logarithmic number of bipartite subgraphs presented by [13], our
algorithm can be similarly generalized with an additional factor of a logarithmic number of
functional operations.

13

Algorithm 4 match

Input: χE(x, y)

(1) ⊲ Initialize.

χE′(x, y)← χE(x, y); P (x, y)← 0
(2) while χE′(x, y) 6= 0 do

(3) ⊲ Determine the vertices of degree at least 2.

TwoOrMoreNeighbors(x)← (∃y, z)(NEQ(y, z) ∧ χE′(x, y) ∧ χE′(x, z))
(4) ⊲ Set P (x, y) = 1 iff y has only one neighbor and is the partner of x.

Q(x, y)← χE′(x, y) ∧ TwoOrMoreNeighbors(y)
Q′(x, y)← Q(x, y) ∧ (∃z)(Q(x, z) ∧Π≺(x, z, y))
P (x, y)← (P (x, y) ∧ (∃z)(Q′(x, z))) ∨Q′(x, y)

(5) ⊲ Delete edges incident to vertices of degree 1.

χE′(x, y)← χE′(x, y) ∧ TwoOrMoreNeighbors(x) ∧ TwoOrMoreNeighbors(y)
(6) ⊲ Halve (approximately) the degree of each vertex.

χE′(x, y)← halve(χE′ (x, y))
(7) ⊲ Add trivial cycles to the computed matching.

M1(x, y)← P (x, y) ∧ P (y, x)
(8) ⊲ Color the vertices in the graph given by P (x, y) alternately and choose an edge

(x, y) iff x is red.

RED(x)← (∀ξ)(P (ξ, x)); DIST0(x, y)← P (x, y)
for i = 1, 2, ..., log |V | do

DISTi(x, y)← (∃ξ)(DISTi−1(x, ξ) ∧ DISTi−1(ξ, y))
RED(x)← RED(x) ∨ (∃ξ)(RED(ξ) ∧ DISTi(ξ, x))

M2(x, y)← P (x, y) ∧ RED(x)
(9) return M1(x, y) ∨M2(x, y) ∨M2(y, x)

4 Analytical Evaluation of the Maximal Matching Algorithm

Most operations on OBDDs require time and space proportional to the sizes of the operands
if the corresponding OBDDs are ordered with respect to the same variable ordering. As a
result each single operation is efficient but a sequence of O(log |V |) functional operations
may lead to OBDDs of exponential size (with respect to the number of Boolean variables).
Therefore, the number of functional operations is only a rough measure for the complexity
of an OBDD-based algorithm. In the rest of this section we present analyses for the overall
running time and the space usage of general graphs and of a very structured graph class.

Assuming that all participating OBDDs are reduced and using the fact that the number of
1-inputs of a Boolean function f can be approximately used as an upper bound for the size of
a reduced OBDD representing f (see Section 2), a careful worst-case analysis gets the result
that maximal matchings in arbitrary graphs can be computed in time and space Õ(|E|6),
where an algorithm uses time (space) Õ(f(n)) if it needs time (space) O(f(n) logk n) for
some constant k. Here, the overall worst-case running time and space requirement has been
determined, i.e., it has been assumed that all OBDDs during the computation are as large
as possible. The most dominating step is the computation of the function REACHABLE in the
algorithm halve for which the function value for two directed edges (v, w) and (x, y) is 1
iff there exists a directed path from (v, w) to (x, y). The number of 1-inputs for REACHABLE

is O(|E|2), therefore a synthesis on REACHABLE functions can be done in time and space
Õ(|E|4). The result is a function that depends on three edge arguments, therefore the size of
an OBDD is Õ(|E|3). Now, a quantification over a variable of a function f cannot lead to a

14

function with more 1-inputs than f . Therefore, the operation can be done in time and space
Õ(|E|6) and the resulting OBDD has size Õ(|E|3). As a consequence all quantification steps
together during one iteration of the repeat loop can be done in time and space Õ(|E|6).

The worst-case bound is pretty bad in comparison to a simple greedy strategy that leads
to a linear time algorithm in the explicit setting. One reason may be that the known methods
for the analysis are rough. Another one, that our worst-case analysis is even independent of
the chosen variable ordering. Nevertheless, implicit algorithms are a heuristic method in case
that explicit algorithms could not be applied because the input graphs are too large but very
structured. In order to demonstrate that there exist graphs for which our implicit algorithm
is more efficient than explicit algorithms, grid graphs have been investigated. The intention
has been to analyze our heuristic method working on OBDDs for a very structured graph
class and to prove that our maximal matching algorithm is efficient although it does not
use any explicit information about the structure of the inputs. The undirected grid graph
on N = 2n vertices consists of the vertex set V = {0, 1}n/2 × {0, 1}n/2 and the edge set
E, where ((x1, y1), (x2, y2)) ∈ E iff |x1| = |x2| and ||y1| − |y2|| = 1 or ||x1| − |x2|| = 1 and
|y1| = |y2|. We assume that N1/2 is a power of 2 since it has no bearing on the essence of
our results. (See Figure 4 for an example of a grid graph.) Directed grid graphs have already
been chosen as graph class in the investigation of the behavior of maximum flow algorithms
in 0-1 networks and of a topological sorting algorithm in the implicit setting ([15] and [21]).
In the following we assume that all participating OBDDs are complete reduced OBDDs and
the input is represented with respect to an interleaved variable ordering where the variables
are ordered with increasing significance.

(0, 0) (0, 7)

(7, 0) (7, 7)

Fig. 4. The undirected 8× 8 grid graph.

The encoding of a vertex in the grid graph consists of two parts: the coordinate of the
corresponding row and the coordinate of the corresponding column in the grid graph. It is
not difficult to see that the characteristic function of the grid graph is decomposable into a
constant number of 4-variate threshold functions, where the maximal absolute weight is inde-
pendent of n. Therefore, using the variable ordering π4,n/2 = (x1

0, x2
0, y1

0 , y2
0 , x1

1, . . . , y2
n/2−1)

and applying Lemma 2 it can be shown that the π4,n/2-OBDD size for the characteristic

15

function of the 2n/2 × 2n/2 grid graph is linear with respect to the number of Boolean vari-
ables which means logarithmic in the number of vertices of the input graph. Alternatively
we can use Theorem 2 in order to prove that the width of the π4,n/2-OBDD for the grid
graph is 6.

The analysis of the maximal matching algorithm on grid graphs is not very complicated
but kind of tedious. In summary it has been shown that a maximal matching for grid graphs
can be computed in O(log3 |V | log log |V |) time and O(log2 |V |) space (a detailed analysis
has been done by [14] (Section 8.3.3)). The ideas are the following ones. Obviously, the
undirected grid graph is bipartite. Since the degree of a vertex in the grid graph is at most
4 and the input graph is very structured, only a constant number of runs of the algorithm
match in findMaximalBipartiteMatching is necessary. Moreover, a constant number of
iterations of the while loop in match is sufficient. As a consequence there is only a constant
number of pass of the algorithm halve and therefore of the algorithm calculatePairing.
The most important observation is that all occuring OBDDs for intermediate results have
constant width and therefore size O(log |V |). Using Lemma 3 this can easily be shown for all
steps without loops assuming that the corresponding input OBDDs are of constant width.
Now, for step (2) and step (3) of the algorithm calculatePairing we observe that the
constant degree of the input graph implies only a constant number of runs which lead to
different resulting OBDDs. Hence, all intermediate OBDDs have constant width. In step
(8) in match all OBDDs for the functions DISTi are small because the function P (x, y)
has a very simple structure. Finally, for step (2) and (4) in halve we have to ensure that
the OBDDs for the functions REACHABLE(v, w, x, y) and DISTi(v, w, x, y) which compute
the output 1 if the edge (x, y) is reachable via a directed path from the edge (v, w) or the
edge (x, y) is reachable via a directed path of length 2i from the edge (v, w) respectively
have small OBDD width. This can be guaranteed because of the simple structure of the
grid graph and Lemma 3. As all intermediate OBDDs have constant width and there are
at most O(log |V |) different functions which have to be stored at the same time, the space
requirement is O(log2 |V |). The number of pass of each loop is constant and each loop can
be done by O(log2 |V |) functional operations. Since the OBDDs involved are of constant
width the running time altogether is O(log2 |V | · log |V | log log |V |) = O(log3 |V | log log |V |).

Concluding Remarks

We have shown that maximal matchings can be computed with a polylogarithmic number of
functional operations in the implicit setting and that there exists a graph class for which even
the overall running time is O(log3 |V | log log |V |) and the space usage is O(log2 |V |), where
V is the set of vertices of the input graph. Moreover, our maximal matching algorithm seems
to be simple enough to be useful in practical applications. One direction for future work is
to implement the algorithm and to perform empirical experiments to determine its practical
value. It would be interesting to investigate how the performance of the maximal matching
algorithm depends on the chosen priority function. Here, we have used a very simple one.
The maximal number of Boolean variables on which a function in the maximal matching
algorithm depends dominates the overall worst-case bounds for the running time and the
space usage. Therefore, another open question is whether we can reduce this number without
increasing significantly the number of functional operations. Experimental evaluation of
different maximal matching algorithms might be revealing.

16

References

1. Bollig, B. (2010), Exponential space complexity for OBDD-based reachability analysis, Infor-
mation Processing Letters 110, 924-927.

2. Bollig, B. (2010), Exponential space complexity for symbolic maximum flow algorithms in 0-1
networks, in Proc. of MFCS, LNCS 6281, pp. 186–197.

3. Bollig, B. (2010) , On symbolic representations of maximum matchings and (un)directed
graphs, in Proc. of TCS IFIP AICT 323, pp. 263–300.

4. Bollig, B., Löbbing, M. and Wegener, I. (1996), On the effect of local changes in the variable
ordering of ordered decision diagrams, Information Processing Letters 59 , 233–239.

5. Breitbart, Y. Hunt III, H. B., and Rosenkrantz, D.J. (1995), On the size of binary decision
diagrams representing Boolean functions, Theoretical Computer Science 145, 45–69.

6. Bryant, R. E. (1986) , Graph-based algorithms for Boolean function manipulation, IEEE Trans.
on Computers 35, 677–691.

7. Feigenbaum, J., Kannan, S., Vardi, M.V. Viswanathan, M. (1998), Complexity of problems
on graphs represented as OBDDs, in Proc. of STACS, LNCS 1373, pp. 216–226.

8. Gentilini, R., Piazza, C. Policriti, A. (2003), Computing strongly connected components in a
linear number of symbolic steps, in Proc. of SODA, ACM Press, pp. 573–582.

9. Gentilini, R., Piazza, C. Policriti, A. (2008), Symbolic graphs: linear solutions to connectivity
related problems, Algorithmica 50, 120–158.

10. Goldberg, A.V., Plotkin, S.K. Vaidya, P.M. (1993), Sublinear time parallel algorithms for
matching and related problems, Journal of Algorithms 14(2), 180–213.

11. Hachtel, G.D. and Somenzi, F. (1997), A symbolic algorithm for maximum flow in 0 − 1
networks, Formal Methods in System Design 10: 207–219.

12. Jájá, J. (1992), An introduction to parallel algorithms, Addison-Wesley Publishing Company.
13. Kelsen, P. (1994), An optimal parallel algorithm for maximal matching, Information Processing

Letters 52(4): 223–228.
14. Pröger, T. (2010), Implizite Graphprobleme für Matchingprobleme, TU Dortmund, Fakultät

für Informatik, Diploma thesis, in German.
15. Sawitzki, D. (2004), Implicit flow maximization by iterative squaring, in Proc. of SOFSEM,

LNCS 2932, pp. 301–313.
16. Sawitzki, D. (2006), Exponential lower bounds on the space complexity of OBDD-based graph

algorithms, in Proc. of LATIN, LNCS 3887, pp. 781–792.
17. Sawitzki, D. (2006), The complexity of problems on implicitly represented inputs, in Proc. of

SOFSEM, LNCS 3831, pp. 471–482.
18. Sawitzki, D. (2007), Implicit simulation of FNC algorithms, ECCC Report TR07-028.
19. Sieling, D. and Wegener, I. (1993), NC-algorithms for operations on binary decision diagrams,

Parallel Processing Letters 48, 139–144.
20. Wegener, I. (2000), Branching Programs and Binary Decision Diagrams - Theory and Appli-

cations, SIAM Monographs on Discrete Mathematics and Applications.
21. Woelfel, P. (2006), Symbolic topological sorting with OBDDs, Journal of Discrete Algorithms

4(1), 51-71.

17

