Probabilistic k-Median Clustering in Data Streams

WAOA 2012

Christiane Lammersen, Melanie Schmidt, Christian Sohler

13.09.2012
Clustering

→ Partition a set of given objects into subsets of similar objects
→ Similarity or Dissimilarity is measured by a distance function
Clustering

→ Partition a set of given objects into subsets of similar objects
→ Similarity or Dissimilarity is measured by a distance function

Metric k-median clustering
Clustering

→ Partition a set of given objects into subsets of similar objects
→ Similarity or Dissimilarity is measured by a distance function

Metric k-median clustering

Given a set of points P from a metric space $M = (X, D)$, find

- a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing
Clustering

→ Partition a set of given objects into subsets of similar objects
→ Similarity or Dissimilarity is measured by a distance function

Metric k-median clustering

Given a set of points P from a metric space $M = (X, D)$, find

- a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing

$$\text{cost}(P, C) := \sum_{i=1}^{n} \sum_{c \in C} \min D(p_i, c).$$
Metric k-median clustering

Given a set of points P from a metric space $M = (X, D)$, find a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing

$$\text{cost}(P, C) := \sum_{i=1}^{n} \min_{c \in C} D(p_i, c).$$
Metric k-median clustering

Given a set of points P from a metric space $M = (X, D)$, find

- a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing

$$
\text{cost}(P, C) := \sum_{i=1}^{n} \min_{c \in C} D(p_i, c).
$$
Metric k-median clustering

Given a set of points P from a metric space $M = (X, D)$, find

- a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing

\[
\text{cost}(P, C) := \sum_{i=1}^{n} \min_{c \in C} D(p_i, c).
\]
Metric k-median clustering

Given a set of points P from a metric space $M = (X, D)$, find a set $C := \{c_1, \ldots, c_k\} \subseteq X$ minimizing

$$\text{cost}(P, C) := \sum_{i=1}^{n} \min_{c \in C} D(p_i, c).$$
Probabilistic Data

- Sensor data
- Database joins
- Movement data
Probabilistic Data

- Sensor data
- Database joins
- Movement data

Probabilistic points

For us, a probabilistic point is a discrete probability distribution
The probabilistic k-median problem

Given a finite set $X = \{x_1, \ldots, x_m\}$ from a metric space (X, D), a set of nodes $V = \{v_1, \ldots, v_n\}$, a probability distribution D_i for each node v_i, given by realization probabilities p_{ij} for all $j \in [m]$, the problem is to find a set $C = \{c_1, \ldots, c_k\} \subseteq X$ that minimizes $E_{D}[\text{cost}(V, C)] = \min \rho: V \rightarrow C \sum_{i=1}^n \sum_{j=1}^m p_{ij} \cdot D(x_j, \rho(v_i))$.

Probabilistic k-Median Clustering in Data Streams WAOA 2012
The probabilistic k-median problem

Given

- finite set $X := \{x_1, \ldots, x_m\}$ from metric space $M = (X, D)$,
The probabilistic k-median problem

Given

- finite set $\mathcal{X} := \{x_1, \ldots, x_m\}$ from metric space $M = (X, D)$,
- set of nodes $V : \{v_1, \ldots, v_n\}$
The probabilistic k-median problem

Given

- finite set $\mathcal{X} := \{x_1, \ldots, x_m\}$ from metric space $M = (X, D)$,
- set of nodes $V : \{v_1, \ldots, v_n\}$
- probability distribution D_i for each node v_i, given by realization probabilities p_{ij} for all $j \in [m]$, $\sum_{j=1}^{m} p_{ij} \leq 1$,
The probabilistic k-median problem

Given

- finite set $X := \{x_1, \ldots, x_m\}$ from metric space $M = (X, D)$,
- set of nodes $V : \{v_1, \ldots, v_n\}$
- probability distribution D_i for each node v_i, given by realization probabilities p_{ij} for all $j \in [m]$, $\sum_{j=1}^{m} p_{ij} \leq 1$,

find a set $C := \{c_1, \ldots, c_k\} \subseteq X$ that minimizes

$$E_D [\text{cost}(V, C)] := \min_{\rho : V \rightarrow C} \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} \cdot D(x_j, \rho(v_i)).$$
Related work: Clustering probabilistic Data

Cormode, McGregor (PODS 2008)
- $(1 + \varepsilon)$-approximation for a variant of the above problem
- $(1 + \varepsilon)$-approximation for uncertain k-means
- Constant approximation for (assigned) metric k-median
- Bicriteria approximations for uncertain metric k-center

Guha and Munagala (PODS 2009)
- Constant approximation for uncertain metric k-center
Data Streams

- large amounts of data
- data arrives in a stream
- only one pass over the data allowed
- limited storage capacity
Data Streams

- large amounts of data
- data arrives in a stream
- only one pass over the data allowed
- limited storage capacity

One way to deal with data streams: Coresets
Coresets for the probabilistic k-median problem

Coresets

- small summary of given data
- typically of constant or polylogarithmic size
- can be used to approximate the cost of the original data
Coresets

- small summary of given data
- typically of constant or polylogarithmic size
- can be used to approximate the cost of the original data

Merge & Reduce

- read data in blocks
- compute a coreset for each block $\rightarrow s$
- merge coresets in a tree fashion
- $\sim s \cdot \log n$
Coresets for the probabilistic k-median problem

Related work: Coreset constructions

'01: Agarwal, Har-Peled and Varadarajan: Coreset concept

'02: Bădoiu, Har-Peled and Indyk: First coreset construction for clustering problems

'04: Har-Peled and Mazumdar, Coreset of size $O(k\varepsilon^{-d} \log n)$ for Euclidean k-median, maintainable in data streams

'05: Har-Peled, Kushal: Coreset of size $O(k^2 \varepsilon^{-d})$ for Euclidean k-median

'05: Frahling and Sohler: Coreset of size $O(k\varepsilon^{-d} \log n)$ for Euclidean k-median, insertion-deletion data streams

'06: Chen: Coresets for metric and Euclidean k-median and k-means, polynomial in d, $\log n$ and ε^{-1}

'10: Langberg, Schulman: $\tilde{O}(d^2 k^3 / \varepsilon^2)$

'11: Feldman, Langberg: $O(dk / \varepsilon^2)$
Our goal

Compute a coreset for the probabilistic k-median problem
Our goal

Compute a coreset for the probabilistic k-median problem

Coresets

Given a set of probabilistic points V, a weighted subset U is a (k, ε)-coreset if for all sets C of k centers it holds

$$|E_D' [\text{cost}_w(U, C)] - E_D [\text{cost}(V, C)]| \leq \varepsilon E_D [\text{cost}(V, C)]$$

where $E_{D'} [\text{cost}_w(U, C)] := \min_{\rho:U \to C} \sum \sum_{j=1}^{m} p'_{ij} w(v_i) D(x_j, \rho(v_i))$.

Probabilistic k-Median Clustering in Data Streams WAOA 2012
Our goal

Compute a coreset for the probabilistic k-median problem

Coresets

Given a set of probabilistic points V, a weighted subset U is a (k, ε)-coreset if for all sets C of k centers it holds

$$|E_D' \left[\text{cost}_w(U, C) \right] - E_D \left[\text{cost}(V, C) \right]| \leq \varepsilon E_D \left[\text{cost}(V, C) \right]$$

where $E_D' \left[\text{cost}_w(U, C) \right] := \min_{\rho: U \rightarrow C} \sum_{v_i \in U} \sum_{j=1}^{m} p'_i \cdot w(v_i) D(x_j, \rho(v_i))$.

$|U|$ and support of probability distributions should be small.
Metric k-median

Idea

Extend cost function to a metric (so far only defined for a tuple of a node and a center). Point $c \in X \mapsto$ node with all probability at c. Generalization of cost function to distance between nodes?
Metric k-median

Idea

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
Metric k-median

Idea

- **Extend** cost function to a **metric**
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \rightsquigarrow$ node with all probability at c
Metric k-median

Idea

- **Extend** cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \sim$ node with all probability at c
- Generalization of cost function to distance between nodes?
Metric k-median

Idea

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \sim$ node with all probability at c
- Generalization of cost function to distance between nodes?

- Expected distance?
Metric k-median

Idea

- **Extend** cost function to a **metric**
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \sim \text{node with all probability at } c$
- Generalization of cost function to distance between nodes?

- **Expected distance?**
- Expected distance between two copies of the same probabilistic node is **not zero**
Metric k-median

Idea

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \sim$ node with all probability at c
- Generalization of cost function to distance between nodes?

- Expected distance?
- Expected distance between two copies of the same probabilistic node is not zero
- \sim expected distance is not a metric
Metric k-median

Idea
- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \sim$ node with all probability at c
- Generalization of cost function to distance between nodes?
Metric k-median

Idea

- **Extend** cost function to a *metric*
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \rightsquigarrow$ node with all probability at c
- Generalization of cost function to distance between nodes?

![Diagram showing points and distances](image)
Metric k-median

Idea

- Extend cost function to a metric
- (so far only defined for a tuple of a node and a center)
- Point $c \in X \rightsquigarrow$ node with all probability at c
- Generalization of cost function to distance between nodes?

→ Earth Mover Distance (EMD)
Probabilistic k-Median Clustering in Data Streams

EMD is a generalization of the cost function. For each $x \in C$, create an artificial node $\mapsto C'$.

A deterministic (k, ε)-coreset for V with center set C' and metric EMD is a probabilistic (k, ε)-coreset – if we thin out the probability distributions and handle non-uniform realization probabilities. (Compute EMD efficiently!)
EMD is a metric
- EMD is a metric
- EMD is a generalization of the cost function
EMD is a metric

EMD is a generalization of the cost function

for each \(x \in C \), create an artificial node \(\sim C' \)
EMD is a metric

EMD is a generalization of the cost function

for each $x \in C$, create an artificial node $\sim C'$

A deterministic (k, ε)-coreset for V with center set C' and metric EMD is a probabilistic (k, ε)-coreset
• EMD is a metric
• EMD is a generalization of the cost function
• for each \(x \in C \), create an artificial node \(\sim \) \(C' \)
• A deterministic \((k, \varepsilon) \)-coreset for \(V \) with center set \(C' \) and metric EMD is a probabilistic \((k, \varepsilon) \)-coreset
 – if we thin out the probability distributions and
- EMD is a metric
- EMD is a generalization of the cost function
- for each $x \in C$, create an artificial node $\sim C'$
- A deterministic (k, ε)-coreset for V with center set C' and metric EMD is a probabilistic (k, ε)-coreset
 - if we thin out the probability distributions and
 - handle non-uniform realization probabilities.
- EMD is a metric
- EMD is a generalization of the cost function
- for each $x \in C$, create an artificial node $\sim C'$
- A deterministic (k, ε)-coreset for V with center set C' and metric EMD is a probabilistic (k, ε)-coreset
 - if we thin out the probability distributions and
 - handle non-uniform realization probabilities.

 - (Compute EMD efficiently!)
Partitioning nodes
Does the same approach work in the Euclidean case?
Does the same approach work in the Euclidean case?

- In the general metric case, C is usually finite (e.g., P)
Does the same approach work in the Euclidean case?

- in the general metric case, C is usually finite (e.g. P)
- in the Euclidean case, one usually sets $C = \mathbb{R}^d$.
Does the same approach work in the Euclidean case?

- In the general metric case, C is usually finite (e.g. P).
- In the Euclidean case, one usually sets $C = \mathbb{R}^d$.

~⇒~ Algorithms for the general case do not work here.
Does the same approach work in the Euclidean case?

- In the general metric case, C is usually finite (e.g. P).
- In the Euclidean case, one usually sets $C = \mathbb{R}^d$.

→ Algorithms for the general case do not work here.

→ Even though probabilistic Euclidean k-median can be seen as deterministic metric k-median, we cannot use deterministic algorithms.
Does the same approach work in the Euclidean case?

- in the general metric case, \(C \) is usually finite (e.g. \(P \))
- in the Euclidean case, one usually sets \(C = \mathbb{R}^d \).

\(\Rightarrow \) algorithms for the general case do not work here

\(\Rightarrow \) even though probabilistic Euclidean \(k \)-median can be seen as deterministic metric \(k \)-median, we cannot use deterministic algorithms

\(\Rightarrow \) Develop coreset construction

\(\Rightarrow \) Use deterministic coreset construction by Chen
<table>
<thead>
<tr>
<th>Clustering and Probabilistic Inputs</th>
<th>Data Streams and Coresets</th>
<th>Probabilistic Coresets</th>
<th>Euclidean k-median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partitioning nodes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chen (2006)

Partitioning nodes
Chen (2006)

- compute bicriteria approximation

Partitioning nodes

\[a_1 \]

\[a_{O(k)} \]
Chen (2006)

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
Chen (2006)

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset
Chen (2006)

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset
Chen (2006)

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset
Chen (2006)
- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset
Chen (2006)

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset
Chen (2006)

- compute bicriteria approximation
- partition input points into subsets of points which are close to each other compared to the optimal clustering cost
- sample representatives from each subset
Theorem

We can compute a probabilistic (k, ε)-coreset of size

\[\mathcal{O}(k^2 \varepsilon^{-3} \cdot \text{polylog}(|C|, n, \delta, 1/p_{\min})) \]

for the probabilistic metric k-median problem and of size

\[\mathcal{O}(k^2 \varepsilon^{-2} d \cdot \text{polylog}(n, \delta, \varepsilon^{-1}, 1/p_{\min})) \]

for the probabilistic Euclidean k-median problem.
Theorem

We can compute a probabilistic \((k, \varepsilon)\)-coreset of size

\[
O(k^2 \varepsilon^{-3} \cdot \text{polylog}(|C|, n, \delta, 1/p_{\text{min}}))
\]

for the probabilistic **metric** \(k\)-median problem and of size

\[
O(k^2 \varepsilon^{-2} d \cdot \text{polylog}(n, \delta, \varepsilon^{-1}, 1/p_{\text{min}}))
\]

for the probabilistic **Euclidean** \(k\)-median problem.

Thank you for your attention!