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Single-Parameter Mechanisms

Instructor: Thomas Kesselheim

1 Myerson’s Lemma

Our main question today will be to identify those outcome rules f , for which we can find
payment rules p such that M = (f, p) is a truthful mechanism. We will call these outcome rules
implementable.

It turns out that there is a very satisfying answer to this question, if we confine ourselves to
single-parameter environments.

Definition 8.1. An allocation rule f for a single-parameter mechanism design problem is mono-
tone if for each player i ∈ N and for all bids b−i of the players other than i, the allocation
fi(z, b−i) to player i is non-decreasing in bid z.

Theorem 8.2 (Myerson 1981). For single parameter environments, the following three claims
hold: (1) An allocation rule is implementable if and only if it is monotone. (2) If allocation rule
f is monotone, then the exists a unique payment rule p such that the mechanism M = (f, p) is
truthful, assuming that a zero bid implies a zero payment. It is given by

pi(bi, b−i) = bifi(bi, b−i)−
∫ bi

0
fi(t, b−i)dt .

This result is remarkable for several reasons: (1) It reduces the rather abstract problem
of deciding whether a certain allocation rule can be implemented, to the far more operational
question of whether a given allocation rule is monotone. (2) It leaves essentially no ambiguity
in regard to the payments. If we require that an agent with value zero pays nothing, then there
is a unique payment rule that turns a given allocation rule into a truthful mechanism. (3) It
gives an explicit formula for the payments that achieve this.

Proof. Let us consider any allocation rule f , whether monotone or not, and let us study how
truthful payments could look like. Truthfulness requires that the utility of each bidder is
maximized by bidding truthfully, no matter who bids and no matter what the other players’
bids are, where the utility of player i for bid z is ui((z, b−i), vi) = vi · fi(z, b−i) − pi(z, b−i) for
b−i denoting the bids of the other players.

Observe that for two possible valuations y and z the respective truthfulness inequalities
imply

yfi(y, b−i)− pi(y, b−i) ≥ yfi(z, b−i)− pi(z, b−i)
zfi(z, b−i)− pi(z, b−i) ≥ zfi(y, b−i)− pi(y, b−i)

The first inequality states that if the true value is y then the bidder does not want to instead
bid z. The second inequality states that deviation to y is not beneficial if the true value is z.
Rearranging terms and writing both inequalities together, we get lower and upper bounds on
the payment difference for both bids

y (fi(z, b−i)− fi(y, b−i)) ≤ pi(z, b−i)− pi(y, b−i) ≤ z (fi(z, b−i)− fi(y, b−i)) . (1)

This inequality is often called payment difference sandwich.
Ignoring the middle part, we already get that if y ≤ z then fi(y, b−i) ≤ fi(z, b−i). This is

the forward direction of part (1) of the theorem.
For the sake of simplicity, let us limit ourselves to allocation rules that are piecewise constant,

as in the Vickrey auction of a single item, or in sponsored search. See Figure 1 for an illustration.
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Figure 1: Piece-wise constant allocation curves

Proposition 8.3. Given a truthful single-parameter mechanism M = (f, p). Suppose f(·, b−i)
is a monotone function that is piecewise constant on intervals [zj , zj+1) for 0 = z0 < z1 < . . ..
If pi(0, b−i) = 0, then

pi(bi, b−i) =
∑

j:zj≤bi

zj (fi(zj , b−i)− fi(zj−1, b−i)) .

Proof. We use the payment differences sandwich (1). First, let us consider any bi that is not
a breakpoint zj . Setting vi = bi and v′i = bi − ε for small enough ε, we get from (1) that
pi(bi, b−i) = pi(bi − ε, b−i). This implies that pi(·, b−i) is constant on [zj , zj+1).

Next, consider any breakpoint zj . Now, by definition for any ε > 0 that is small enough, we
have fi(zj − ε, b−i) = fi(zj−1, b−i). By the above consideration pi(zj − ε, b−i) = pi(zj−1, b−i).
That is for all ε > 0 that are small enough

(zj− ε) (fi(zj , b−i)− fi(zj−1, b−i)) ≤ pi(zj , b−i)−pi(zj−1, b−i) ≤ zj (fi(zj , b−i)− fi(zj−1, b−i)) .

This means that

pi(zj , b−i)− pi(zj−1, b−i) = zj (fi(zj , b−i)− fi(zj−1, b−i))

because for ε→ 0 the limits of the left and right part are identical.

We can also rearrange the explicit formula. If zk ≤ bi < zk+1, then

pi(bi, b−i) = zkf(zk, b−i)−
k∑

j=1

(zj − zj−1)fi(zj , b−i).

Note that this matches exactly the integral expression in the theorem statement. By the same
technique but playing around with more ε terms it can be shown to also hold for general
functions f .

It remains to show that any monotone allocation rule combined with the payments pi(bi, b−i) =

bifi(bi, b−i)−
∫ bi
0 fi(t, b−i)dt is truthful. To this end, observe that in the mechanism M = (f, p),

we have

ui(b, vi) = (vi − bi)fi(b) +

∫ bi

0
fi(t, b−i)dt

If bi ≤ vi then

ui(b, vi)− ui((vi, b−i), vi) = (vi − bi)fi(b) +

∫ bi

0
fi(t, b−i)dt−

∫ vi

0
fi(t, b−i)dt

= (vi − bi)fi(b)−
∫ vi

bi

fi(t, b−i)dt ≤ (vi − bi)fi(b)−
∫ vi

bi

fi(b)dt = 0 ,
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Figure 2: Visualization of the value (blue), the payment (red), and the utility (green) when
bidding truthfully (on the left) and for over- and underbidding (in the middle and on the right).
Shaded areas contribute negatively.

where the inequality uses monotonicity of f . If bi ≥ vi then by the same argument

ui(b, vi)− ui((vi, b−i), vi) = (vi − bi)fi(b) +

∫ bi

0
fi(t, b−i)dt−

∫ vi

0
fi(t, b−i)dt

= (vi − bi)fi(b) +

∫ bi

vi

fi(t, b−i)dt ≤ (vi − bi)fi(b)−
∫ bi

vi

fi(b)dt = 0 .

So, in any case ui((vi, b−i), vi) ≥ ui(b, vi).
We could also convince ourselves pictorially that this payment scheme is truthful, see Figure

2. In all three parts of Figure 2, the allocation curve is the same, as well as the true value of
our player. Figure 2 (a) shows what happens in a truthful bid: Our bidder gets the surplus
indicated by the area of the blue rectangle, with the red area showing her payment and the
green area her utility. Figure 2 (b) shows what happens when she overbids: For bid b with
v < b, her allocation goes up and therefore her surplus goes up (blue), but her pay (red) goes
up by more than her surplus, resulting in a utility that is lower (the lower green L-shape minus
the small green rectangle). On the other hand, underbidding (Figure 2 (c)) leads to a smaller
allocation, smaller surplus (blue), smaller pay (red), but also smaller utility (green). That is,
the player’s utility is indeed maximized by her true bid, which proves the theorem.

2 Examples

We are now ready to apply the tools that we developed in this lecture to the three examples
mentioned last time.

Example 8.4 (Single-Item Auction). We have already seen that the Vickrey (second-price)
auction is truthful. We can recover this result from Myerson’s lemma. We know that the
payment for winning is the critical value at which a player becomes a winner. This is the second
highest bid.

Example 8.5 (Sponsored Search Auction). In sponsored search social welfare is maximized by
greedily assigning position 1 through k to the bidders with the 1-st to k-th highest bid. Denoting
the j-th highest bid by b(j), Myerson’s lemma yields the following graphical representation of a
player’s payment whose bid is highest:

More generally, the externality of a player i that is assigned position j is the loss in welfare
incurred on the players assigned slots below. If player i was not present they could all move one
position up. In other words, setting αk+1 = 0, player i’s payment is given by

pi(bi, b−i) =
k∑

`=j

(αj − αj+1) · b(j+1) .
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Figure 3: Allocation curve in a single-item auction
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Figure 4: Allocation curve in a sponsored search auction

Example 8.6 (Scheduling on Related Machines). Minimizing the makespan on related machines
is intractable (unless P = NP ). So let’s consider the following simple algorithmic strategy:
Arrange the jobs in decreasing work order, and then greedily assign the next job to the machine
that finishes it earliest. For example, three jobs with 2, 1.1, and 1.05 work units will be placed
on two machines with 0.4 and 0.45 processing times per unit of work as follows. The heaviest
job will go to the faster machine, and the other two lighter jobs will go to the slower machine.
Now consider what happens if the slower machine claims to have a processing time of 0.5. Then
it will receive the heaviest job, while the two smaller jobs are assigned to the other machine.
So by claiming a higher speed (shorter processing time), a machine can reduce its workload. A
contradiction to monotonicity.

Let us conclude with two important orthogonal observations: (1) In many practical applica-
tions to which Myerson’s Lemma applies, other (non-truthful) mechanisms are used in practice.
For example, the mechanism used by Google to sell sponsored search results is not truthful. So
there must be other reasons, in addition to truthfulness, that play a role. We will return to this
point and non-truthful mechanisms later. (2) Myerson’s lemma tells us that we can find the best
truthful polynomial-time mechanism for a problem by searching for the best polynomial-time
algorithm that is monotone. An important question thus is, does this additional requirement
make the problem any harder?
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