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VC Dimension

Instructor: Thomas Kesselheim

Recall our setting from last time. We can to classify data points from a set X using hy-
pothesis h : X → {0, 1}. The class of all hypotheses is called H. There is a ground truth
f : X → {0, 1} and we are in the realizable case, which means that f ∈ H.

By H[m] we indicate the maximum number of distinct ways to label m data points from X
using different functions in H. A trivial upper bound is H[m] ≤ 2m but the function can be
much smaller.

Given m sample points x1, . . . , xm with labels y1, . . . , ym, the training error of a hypothesis
is

errS(h) :=
1

m
|{h(xi) 6= yi}| .

The generalization error errD(h) of a hypothesis h with respect to a distribution D is

errD(h) := PrX∼D [h(X) 6= f(X)] .

For all choices of ε > 0, δ > 0, if we draw m times independently from distribution D such
that

m ≥ max

{
8

ε
,
2

ε
log2

(
2H[2m]

δ

)}
, (1)

then with probability at least 1− δ, all h ∈ H with errS(f) = 0 have errD(h) < ε.
Today, we would like to better understand Condition (1). Note that is equivalent to require

that

ε ≥ max

{
8

m
,

2

m
log2

(
2H[2m]

δ

)}
.

The question that we are interested in is if the generalization error errD(h) vanishes if we choose

larger and larger m. This indeed works out if log2(H[2m])
m converges to 0.

For the trivial bound H[m] ≤ 2m, this is not true. For threshold classifiers on a line, we
could show that H[m] ≤ m+ 1. This is sufficient. More generally, we ask: Is there a point after
which H[m] grows subexponentially?

1 VC Dimension

Today, we will get to know the central notion of VC dimension. It was introduced by Vapnik
and Chervonenkis in 1968. The VC dimension of a set of hypotheses H is roughly the point
from which on H[m] is smaller than 2m.

Definition 15.1. A set of hypotheses H shatters a set S ⊆ X if there are hypotheses in H that
label S in all possible 2|S| ways, that is, H[S] = 2|S|.

Definition 15.2. The VC dimension of a set of hypotheses H is the largest size of a set S that
is shattered by H, i.e., max{|S| | H[S] = 2|S|}. If there are sets of unbounded sizes that are
shattered then the VC dimension is infinite.

Let us consider a few examples.
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• For X = R and H being the class of functions of the form

h(x) =

{
0 for x ≤ t
1 otherwise

the VC dimension is 1. This is because any set {x} is shattered because h(x) = 0 and
h′(x) = 1 for suitable choices of h and h′. In contract, for any set of two points x1 ≤ x2 ∈ R,
it is impossible that h(x1) = 1 but h(x2) = 0.

• If H is finite, then the VC dimension is at most log2|H|.

• If X is infinite and H contains all functions h : X → {0, 1}, then the VC dimension is
infinite.

2 Bounding the Growth Function by the VC Dimension

Theorem 15.3 (Sauer’s Lemma). Let H be a hypothesis class of VC dimension d. Then for
all m ≥ d

H[m] ≤
d∑

i=0

(
m

i

)
.

In order to prove Sauer’s Lemma, the following lemma will turn out to be very helpful.

Lemma 15.4. Consider a set of data points S ⊆ X and let L be an arbitrary set of labellings
` : S → {0, 1}. Then L shatters at least |L| subsets of S. That is, there are at least |L| distinct
sets S′ ⊆ S such that S′ can be labelled in all 2|S

′| different ways using functions from L.

Proof. We prove the claim by induction on |L|. The base case is |L| = 1. In this case, the
empty set is shattered.

For the induction step, consider that |L| > 1. In this case, there has to be some x ∈ S
such that `(x) = 0 for some ` ∈ L and `′(x) = 1 for some `′ ∈ L. For i ∈ {0, 1}, let
Li = {` ∈ L | `(x) = i}. Now, apply the induction hypothesis on the sets L0 and L1. Let
T0 ⊆ 2S and T1 ⊆ 2S denote the shattered sets respectively. By induction hypothesis, we have
|T0| ≥ L0 and |T1| ≥ L1.

Note that there is no S′ ∈ Ti with x ∈ S′ because the label of x is always fixed to i.
All of T0 ∪T1 is shattered by L. Additionally, if S′ ∈ T0 ∩T1, then S′ ∪{x} is also shattered

by L because after assigning x an arbitrary label we can still assign all possible labels to the S′

using a labelling in L. All sets constructed this way are not contained in T0 or T1 because they
always contain x.

Consequently, the number of shattered sets is at least

|T0 ∪ T1|+ |T0 ∩ T1| = |T0|+ |T1| − |T0 ∩ T1|+ |T0 ∩ T1| = |T0|+ |T1| ≥ |L0|+ |L1| = |L| .

Proof of Sauer’s Lemma. Given any set S ⊆ X of size m, we would like to bound H[S]. To this
end, let L be the set of possible labellings ` : S → {0, 1} applying different hypotheses from H
on S. Formally, L = {h|S | h ∈ H}. By definition H[S] = |L|.

Furthermore, let T ⊆ 2S be the family of subsets of S that are shattered by H. Using
Lemma 15.4, we know that |T | ≥ |L|.
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We also know that no set larger than d can be shattered, so T contains sets of size at most
d. Therefore, the size of T is bounded by the number of such sets

|T | ≤
d∑

i=0

(
m

i

)
.

In combination, H[S] = |L| ≤ |T | ≤
∑d

i=0

(
m
i

)
.

To simplify the expression in Sauer’s Lemma, we can use the following bound on the binomial
coefficients (

m

i

)
=

m!

(m− i)! · i!
≤ mi

i!
=
(m
d

)i di
i!
≤
(m
d

)d di
i!

.

Together with the definition of the exponetial function ex =
∑∞

i=0
xi

i! , we get

d∑
i=0

(
m

i

)
≤

d∑
i=0

(m
d

)d di
i!

=
(m
d

)d d∑
i=0

di

i!
≤
(m
d

)d
ed .

This gives us the following corollary.

Corollary 15.5. Let H be a hypothesis class of VC dimension d. Then for all m ≥ d

H[m] ≤
(em

d

)d
.

Plugging this bound into Condition (1), we get that for a hypothesis classH of VC dimension
d for all choices of ε > 0, δ > 0 if we draw m times independently from distribution D such that

m ≥ max

{
8

ε
,
2

ε
log2

(
2
(
2em
d

)d
δ

)}
= max

{
8

ε
,
2d

ε
log2

(
2em

d

)
+

2

ε
log2

(
2

δ

)}
,

then with probability at least 1− δ, all h ∈ H with errS(f) = 0 have errD(h) < ε.

Corollary 15.6. Any hypothesis class of finite VC dimension is PAC-learnable.

3 The Unrealizable Case

In our results so far, we only considered the “realizable case”. That is, there is a ground
truth f : X → {0, 1} and f ∈ H. Actually, in any machine learning setting, this is too strong
an assumption. Usually, the features do not describe a concept entirely. Coming back to
our original example of spam classification, typical features might be word counts, sender IP
addresses, header data, and so on. Of course, based on only this information, it is impossible
to fully correctly classify all e-mails. Even if it was possible, we might choose only a smaller
hypothesis class H to allow efficient learning.

In the unrealizable case, one therefore asks how many sample are necessary to be able to
correctly estimate the generalization error from the training error. We ask that with probability
at least 1− δ

|errD(h)− errS(h)| < ε for all h ∈ H.

If this condition is fulfilled then choosing a hypothesis with small generalization error is approx-
imately the same as choosing one with small training error.

For this uniform convergence, a similar theory exists. Instead of Condition (1), it is now
sufficient if

m ≥ 8

ε2
ln

(
2H[2m]

δ

)
.

So, most importantly, there is such a choice of m whenever the VC dimension is finite.



Algorithms and Uncertainty, Winter 2017/18 Lecture 15 (page 4 of 4)

References and Further Reading

These notes are based on notes and lectures by Anna Karlin https://courses.cs.washington.

edu/courses/cse522/17sp/ and Avrim Blum http://www.cs.cmu.edu/~avrim/ML14/. Also
see the references therein.


