
Algorithms and Uncertainty, Winter 2017/18 Lecture 13 (4 pages)

Stochastic Steiner Tree

Instructor: Thomas Kesselheim

Today, we will consider another example of stochastic two-stage optimization. Last time, we
considered LP-based approaches. One the the drawbacks of these approaches is that one always
has to solve a linear program whose size depends on the number of scenarios. Today, we will
consider a different kind of algorithm that is more combinatorial. The number of scenarios does
not matter at all. Indeed, we only need to be able to draw samples from the same distribution
that the scenario is generated from.

1 Problem Formulation

We consider a stochastic variant of the following rooted Steiner tree problem. In the determin-
istic offline problem, we are given a graph G = (V,E), edge weights we ≥ 0 for e ∈ E, a root
r ∈ V , and a set of terminals T ⊆ V . Our task is to select a subset of the edges S ⊆ E such that
{r}∪T is connected in G′ = (V, S) and

∑
e∈S we is minimized. Observe that if T = V then this

problem is exactly the minimum spanning tree problem. It is an NP-hard problem. Without
loss of generality, G = (V,E) is a complete graph. We can also assume that the weights we fulfill
the triangle inequality. That is, w{u,v} ≤ w{u,x}+w{x,v} for all u, v, x ∈ V . This is without loss
of generality because we could instead take the detour via x instead of the edge {u, v}.

In the stochastic variant, we do not know the set T in advance but only the distribution it
is drawn from. In the first stage, we do not yet know the set T but we can already pick edges e
at costs we. In the second stage, we know the set T but edges are more expensive now: Picking
edge e costs λ · we for λ ≥ 1.

We know the probability distribution that T is drawn from. More precisely, it will only be
necessary to be able to draw samples from the same distribution. Our goal is to minimize the
expected cost ∑

e selected in first stage

we + E

 ∑
e selected in second stage

λ · we

 .

Let us understand the limiting cases first: In the case λ = 1 it does not make sense to
select anything in the first stage because it does not get more expensive in the second one. For
λ → ∞, the second stage gets extremely expensive, so we buy edges connecting every possible
T in the first stage.

Again, even the basic Steiner tree problem is NP hard. Therefore, we cannot compute the
optimal policy in polynomial time and we want to approximate it instead. More formally, let
E∗0 we the set of edges selected by the optimal policy in the first stage, and let E∗T we the set
of edges selected by the optimal policy in the second stage if the set of terminals is T . We are
looking for a policy whose expected cost is as close as possible to

Z∗ :=
∑
e∈E∗0

we + E

∑
e∈E∗T

λ · we

 .



Algorithms and Uncertainty, Winter 2017/18 Lecture 13 (page 2 of 4)

2 Steiner Trees and Spanning Trees

Before coming to our algorithm, let us first prove a well-known result that Steiner trees can
be approximated by minimum spanning trees. Such a spanning tree only uses edges between
{r}∪T and no edges to other vertices (called Steiner vertices). Let MST(T ) ⊆ E be the minimum
spanning tree on G|{r}∪T and let Steiner(T ) ⊆ E be the optimal Steiner tree connecting {r}∪T .

Lemma 13.1. A minimum spanning tree on G|{r}∪T is a 2-approximation for the min-cost
Steiner tree on {r} ∪ T , formally

w(MST(T )) ≤ 2 · w(Steiner(T ))

Proof. The idea is as follows: Traverse the optimal Steiner tree in a depth-first-search manner.
You cross each edge twice: Once when entering the subtree and once when exiting it again.
Equivalently, you can double each edge in the tree and consider an Euler tour through these
duplicated tree edges. As each edge is crossed twice, the sum of edge costs on this run is
2 · w(Steiner(T )).

We get a sequence of vertices that contains r and each terminal from T at least once.
Consider the path that shortcuts this sequence by only visiting r and the vertices in T exactly
once. By triangle inequality, this path can only be shorter, so the sum of edge costs is at most
2 · w(Steiner(T )).

This path is a spanning tree of G|{r}∪T . The minimum spanning tree has at most its cost.

3 Algorithm “Boosted Sampling”

We will consider the following algorithm called Boosted Sampling:

• In the first stage, draw λ times from the known distribution, call these sets S1, . . . , Sλ.
Compute a minimum spanning tree on {r} ∪ S1 ∪ . . . ∪ Sλ, let E0 be the set of edges
contained in it and pick them.

• In the second stage, set we = 0 for all e ∈ E0 and compute a minimum spanning tree on
{r} ∪ T , let ET be the set of contained edges not picked so far and pick them.

This algorithm only needs to sample λ times and calculate two minimum spanning trees. It
therefore runs in polynomial time if λ is polynomially bounded.

Theorem 13.2. The expected cost of the algorithm is at most 4Z∗. That is,

E

∑
e∈E0

we +
∑
e∈ET

λ · we

 ≤ 4Z∗.

4 Analysis of First Stage

Lemma 13.3. The expected first-stage cost of the algorithm is at most 2Z∗. That is,

E

∑
e∈E0

we

 ≤ 2Z∗.



Algorithms and Uncertainty, Winter 2017/18 Lecture 13 (page 3 of 4)

Figure 1: Illustration of Lemma 13.5 with two sets U1 and U2. Using only the red edges, each
red vertex is connected to the root or a blue vertex, which we can connect for free, or is blue
itself. The same holds if we swap red and blue.

Proof. Observe that E∗0 ∪E∗S1
∪ . . .∪E∗Sλ is a feasible Steiner tree connecting all of S1 ∪ . . .∪Sλ

to the root r.
Our choice, E0 = MST(S1 ∪ . . . ∪ Sλ) can have at most twice the cost, so

w(E0) ≤ 2w(E∗0 ∪ E∗S1
∪ . . . ∪ E∗Sλ) = 2w(E∗0) + 2

λ∑
i=1

w(E∗Si) .

By linearity of expectation, we have

E [w(E0)] ≤ 2w(E∗0) + 2

λ∑
i=1

E
[
w(E∗Si)

]
.

Furthermore, observe that E
[
w(E∗Si)

]
= E [w(E∗T )] for all i because Si and T are drawn from

the same distribution. So

E [w(E0)] ≤ 2w(E∗0) + 2λE [w(E∗T )] = 2Z∗ .

5 Analysis of Second Stage

Lemma 13.4. The expected second-stage cost of the algorithm is at most 2Z∗. That is,

E

∑
e∈ET

λ · we

 ≤ 2Z∗.

To bound the cost incurred in the second stage, we have to understand how expensive it is
to “augment” a spanning tree. Given A,B ⊆ V let δ(A,B) be the cost of a minimum spanning
tree on the graph G|{r}∪A∪B when setting w{u,v} = 0 for all u, v ∈ {r} ∪A.

Lemma 13.5. For any U1, . . . , Uk ⊆ V , we have

k∑
i=1

δ

⋃
j 6=i

Uj , Ui

 ≤ w(MST(U1 ∪ . . . ∪ Uk)) .

Proof. Consider MST(U1∪ . . .∪Uk). Recall that this is a tree rooted at r. For v ∈ U1∪ . . .∪Uk,
v 6= r, let av be the weight of the edge connecting v to its parent node in this tree.

Now, we can bound

δ

⋃
j 6=i

Uj , Ui

 ≤ ∑
v∈Ui\

⋃
j 6=i Uj

av



Algorithms and Uncertainty, Winter 2017/18 Lecture 13 (page 4 of 4)

because by connecting each v ∈ Ui \
⋃
j 6=i Uj to its parent node and using the zero-weight edges

all of U1 ∪ . . . ∪ Uk is connected.
Therefore, we now have

k∑
i=1

δ

⋃
j 6=i

Uj , Ui

 ≤ k∑
i=1

∑
v∈Ui\

⋃
j 6=i Uj

av ≤
∑

v∈
⋃
i Ui

av = w(MST(U1 ∪ . . . ∪ Uk)) .

Proof. In the second stage, we connect the set T by augmenting a minimum spanning tree on
{r} ∪ S1 ∪ . . . ∪ Sλ to one that also includes the set T . Therefore∑

e∈ET

λ · we = λ · δ(S1 ∪ . . . ∪ Sλ, T ) .

We now perform a thought experiment: Note that S1, . . . , Sλ and T are λ+ 1 independent
draws from the same distribution. So, equivalently, we might also draw U1, . . . , Uλ+1 from this
distribution and then draw K uniformly from {1, . . . , λ + 1} and set T = UK and assign the
other Ui sets arbitrarily to S1, . . . , Sλ.

Therefore, we can write

E [δ(S1 ∪ . . . ∪ Sλ, T )] = E

δ
⋃
j 6=K

Uj , UK

 = E

 1

λ+ 1

λ+1∑
i=1

δ

⋃
j 6=i

Uj , Ui

 .

By Lemma 13.5, we have

λ+1∑
i=1

δ

⋃
j 6=i

Uj , Ui

 ≤ w(MST(U1 ∪ . . . ∪ Uλ+1)) .

So, combining these arguments, the second-stage cost of our algorithm can be bounded by

E

∑
e∈ET

λ · we

 ≤ λ

λ+ 1
E [w(MST(U1 ∪ . . . ∪ Uλ+1))] .

Again, E∗0 ∪ E∗U1
∪ . . . ∪ E∗Uλ+1

is a feasible Steiner tree connecting U1 ∪ . . . ∪ Uλ+1 to the
root, so the minimum spanning tree can have at most twice the cost, formally

w(MST(U1 ∪ . . . ∪ Uλ+1)) ≤ 2w(E∗0 ∪ E∗U1
∪ . . . ∪ E∗Uλ+1

)

= 2w(E∗0) + 2
λ+1∑
i=1

w(E∗Ui) .

Again use linearity of expectation and E
[
w(E∗Ui)

]
= E [w(E∗T )] to get

E [w(MST(U1 ∪ . . . ∪ Uλ+1))] ≤ 2w(E∗0) + 2(λ+ 1)E [w(E∗T )] ≤ 2
λ+ 1

λ
(w(E∗0) + λE [w(E∗T )]) .

Reference

Boosted sampling: approximation algorithms for stochastic optimization, A. Gupta, M. Pál, R.
Ravi, A. Sinha, STOC 2004


