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Randomized Rounding for Online Set Cover

Instructor: Thomas Kesselheim

In this lecture, we will see how the fractional solutions that we got for the Set Cover LP can
be turned into integral ones. We will do this in a randomized way by interpreting fractional
values as probabilities.

1 Rounding Fractional Solutions for Set Cover

Our algorithm is as follows.
A priori, we choose for each S ∈ S a threshold θS uniformly from [0, 1].

Upon arrival of an element e, update (x
(t)
S )S∈S .

(a) Pick all sets S, for which x
(t)
S ≥

1
2 ln tθS .

(b) If e is still uncovered, choose one set S from probability distribution defined by (x
(t)
S )S:e∈S

and pick it. Note that this is possible since
∑

S:e∈S x
(t)
S ≥ 1.

Theorem 4.1. Using a c-competitive algorithm for the fractional problem, the algorithm for
the integral problem is O(c · logm)-competitive.

Lemma 4.2. For every element e, the probability that part (b) is executed is at most 1
t2

.

Proof. Let X
(t)
S = 1 if set S has been picked until round t because x

(t)
S ≥

1
2 ln tθS , otherwise set

X
(t)
S = 1.

By design

Pr
[
X

(t)
S = 1

]
= Pr

[
x
(t)
S ≥

1

2 ln t
θS

]
= Pr

[
θS ≥ (2 ln t)x

(t)
S

]
= (2 ln t)x

(t)
S .

As 1− q ≤ exp(−q) for q ∈ [0, 1], this implies

Pr
[
X

(t)
S = 0

]
= 1− (2 ln t)x

(t)
S ≤ exp(−(2 ln t)x

(t)
S ) .

Note that these choices are independent, so

Pr

[ ∧
S:e∈S

X
(t)
S = 0

]
=
∏
S:e∈S

Pr
[
X

(t)
S = 0

]
≤
∏
S:e∈S

exp(−(lnm)x
(t)
S ) = exp

(
−(2 ln t)

∏
S:e∈S

x
(t)
S

)
≤ 1

t2
.

Lemma 4.3. The expected cost due to set S within the first m rounds is at most (
∑m

t=1
1
t2

+

2 lnm)cSx
(t)
S .

Proof. Let Xt,S = 1 if set S is chosen in part (b) statement of step t. Note that we have

E [Xt,S ] ≤ 1
t2
· x(t)S ≤

1
t2
· x(m)

S .
The expected cost due to set S within the first m rounds is

E

[
m∑
t=1

cSXt,S + cSX
(m)
S

]
=

m∑
t=1

cSE [Xt,S ] + cSE
[
X

(m)
S

]
≤ t · cS

m∑
t=1

1

t2
x
(m)
S + cS(lnm)x

(m)
S .
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Proof of Theorem 4.1. We consider the outcome after m rounds. Let x∗ be an optimal of-
fline fractional solution to the LP relaxation. As the fractional algorithm is c-competitive,

we have
∑

S∈S cSx
(m)
S ≤ c ·

∑
S∈S cSx

∗
S . Furthermore, by Lemma 4.3, E [cost(ALG(σ))] ≤∑

S∈S
(∑m

t=1
1
t2

+ lnm
)
cSx

(m)
S .

Note that
∑∞

t=1
1
t2

= π2

6 . So overall, E [cost(ALG(σ))] ≤ c ·
(
π2

6 + lnm
)∑

S∈S cSx
∗
S ≤

c ·
(
π2

6 + lnm
)

cost(OPT(σ)).

2 Ski Rental

Let us come back to the ski-rental problem. Suppose you want to go skiing. You can either rent
skis (cost 1 per day) or buy them (cost B once). The problem is that you do not what which
option is cheaper because you do not know the number of days you will go skiing in advance.

This problem is a very simple special case of online set cover. There are m elements (m is
unknown beforehand). The set S consists of the singleton sets, with a cost of 1 each, and the
set that covers all m elements for a cost of B. In each round, we observe an element and have
to make sure it is covered.

We can use the same algorithmic ideas as for set cover to design a randomized e
e−1 -competitive

algorithm. First, again we solve the fractional problem with a deterministic algorithm. It follows
the multiplicative-weights ideas.

Theorem 4.4. There is a e
e−1 -competitive deterministic algorithm for fractional Set Cover

instances as derived from Ski Rental.

We will skip the proof here.
The randomized rounding follows the same idea we had before and is very simple here. We

have a primal variable xbuy that corresponds to buying the skis that is increased over time by
the fractional algorithm. We draw θ uniformly from [0, 1] beforehand and buy the skis as soon

as x
(t)
buy ≥ θ.

Theorem 4.5. Given a c-competitive algorithm for fractional Set Cover instances as derived
from Ski Rental that never increases variables by more than is necessary. Then the above
algorithm is a randomized c-competitive algorithm for Ski Rental.

Proof. Let Zbuy be the random variable indicating the cost of buy skis within the first m

steps. We do so with probability x
(m)
buy. The expected cost from buying in the first m steps is

E [Zbuy] = B · x(m)
buy.

Let Zrent,t be the random variable indicating the cost of renting skis in the t-th step. We rent

skis with probability 1−x(t)buy. Note that x
(t)
buy+x

(t)
rent,t = 1 because this is the new constraint that

has to be fulfilled and the algorithm does not increase the variables by more than is necessary.

In other words, we rent skis with probability at most x
(t)
rent,t. So, E [Zrent,t] ≤ x(t)rent,t ≤ x

(m)
rent,t.

Overall, our expected cost is

E

[
Zbuy +

m∑
t=1

Zrent,t

]
≤ B · x(m)

buy +
m∑
t=1

x
(m)
rent,t ≤ c

(
B · x∗buy +

m∑
t=1

x∗rent,t

)
≤ cost(OPT(σ)) ,

where x∗ is an optimal offline solution.


