
Algorithms and Uncertainty, Winter 2017/18 Lecture 3 (4 pages)

Fractional Online Set Cover via LP Duality

Instructor: Thomas Kesselheim

Today, we will learn about a fundamental technique in the design of online algorithms. As
our motivating example, we consider the set cover problem in its weighted variant. In the offline
version, you are given a universe of m elements U = {1, . . . ,m} and a family of n subsets of
U called S ⊆ 2U . For each S ∈ S, there is a cost cS . Your task is to find a cover C ⊆ S of
minimum cost

∑
S∈C cS . A set C is a cover if for each e ∈ U there is an S ∈ C such that e ∈ S.

Alternatively, you could say
⋃
S∈C S = U .

We assume that each element of U is included in at least one S ∈ S. So in other words S is
a feasible cover. Otherwise, there might not be a feasible solution.

Note that the problem is NP-hard in the offline case, so this already limits our expectations.
We will consider the online version, in which the universe U arrives online, one element at a
time. Whenever an element is revealed, we get to know which sets S ∈ S it is contained in and
have to make sure that it is covered, potentially by adding a set from S to C. We may never
remove sets from C. Our goal is to eventually select sets so as to minimize

∑
S∈C cS .

1 LP Relaxation

We can state the set cover problem as an integer program as follows

minimize
∑
S∈S

cSxS (minimize the overall cost)

subject to
∑

S : e∈S
xS ≥ 1 for all e ∈ U (cover every element at least once)

xS ∈ {0, 1} for all S ∈ S (every set is either in the set cover or not)

We can relax the problem by exchanging the constraints xS ∈ {0, 1} by 0 ≤ xS ≤ 1. (These are
the only constraints requiring integrality of the solution.) We get the following LP relaxation1

minimize
∑
S∈S

cSxS

subject to
∑

S : e∈S
xS ≥ 1 for all e ∈ U

xS ≥ 0 for all S ∈ S

In the online problem, we know the variables and the objective function in advance. We
get to know one constraint at a time and we have to maintain a feasible solution and we are
not allowed to reduce the values of the variables. So the difficulty is that we do not know what
constraints will come later when we choose which variables to increase.

For the time being, let us only consider the fractional problem, that is, the problem without
the integrality constraints. We will first devise an algorithm to solve this problem online and
later on use this algorithm to also derive solutions to the integral problem.

1We could also include that xS ≤ 1 for all S but this will not change the optimal solution as values greater
than 1 do not make sense.



Algorithms and Uncertainty, Winter 2017/18 Lecture 3 (page 2 of 4)

2 LP Duality

We will use LP duality for our algorithm. It is not necessary to know LP duality in its generality.
What we need to know is that the dual LP gives us a lower bound on all feasible solutions. The
dual of the Set Cover LP relaxation is

maximize
∑
e∈U

ye

subject to
∑
e∈S

ye ≤ cS for all S ∈ S

ye ≥ 0 for all e ∈ U

Lemma 3.1 (Weak Duality). Let x and y be feasible solutions to the primal and dual program
respectively. Then

∑
S∈S cSxS ≥

∑
e∈U ye.

Proof. We have
∑

e∈U ye ≤
∑

e∈U
(∑

S : e∈S xS
)
ye =

∑
S∈S xS

∑
e∈S ye ≤

∑
S∈S xScS .

Example 3.2. Consider U = {1, 2, 3}, S = {{1, 2}, {1, 3}, {2, 3}}, cS = 1 for all S ∈ S.
The optimal set cover solution has cost 2 because we need to take two sets. However, setting
x{1,2} = x{1,3} = x{2,3} = 1

2 for all S ∈ S is a feasible solution to the LP relaxation of cost 3
2 .

It is optimal because setting y1 = y2 = y3 = 1
2 , we also have a solution to the dual LP of cost

3
2 . This means there cannot be a cheaper solution to the primal LP.

3 Algorithmic Approach

Our algorithm will use LP duality. Namely, we will not only maintain (feasible) primal solutions
x(t) but also (possibly infeasible) dual solutions y(t). Both start from x(0) = 0 and y(0) = 0.

Lemma 3.3. If for all times t

(a) The primal increase is bounded by α times the dual increase, that is

P (t) − P (t−1) ≤ α(D(t) −D(t−1)) , where P (t) =
∑
S∈S

cSx
(t)
S and D(t) =

∑
e∈U

y(t)e

(b) 1
β y

(t) is dual feasible,

The the algorithm is αβ-competitive.

Proof. First, observe that by a telescoping-sum argument, we have P (t) =
∑t

t′=1(P
(t′) −

P (t′−1)) ≤ α
∑t

t′=1(D
(t′) −D(t′−1)) = αD(t).

Let x∗ be an optimal offline solution. Then, by weak duality, we know
∑

S∈S cSx
∗
S ≥

∑
e∈U ye

for any dual feasible y, in particular y = 1
β y

(t). So,
∑

S∈S cSx
∗
S ≥

1
β

∑
e∈U ye.

Combined with P (t) ≤ αD(t), we get cTx(t) ≤ α · bT y(t) ≤ αβcTx∗. This means exactly that
the online solution x(t) is within an αβ factor of the offline solution x∗.

When choosing x(t) and y(t), our primary goal is that they have similar objective-function
values so that Property (a) in Lemma 3.3 holds with a small α.

So, let us figure out what we would like to do. Suppose we are in step t. We observe a new
constraint

∑
S : e∈S xS ≥ 1 in the primal LP. In the dual, a new variable ye arrives.



Algorithms and Uncertainty, Winter 2017/18 Lecture 3 (page 3 of 4)

We have
∑

S : e∈S x
(t−1)
S < 1, otherwise we would not have to do anything. We will have to

increase some variables to get a feasible x(t). Of course, x(t) will be more expensive than x(t−1).

We reflect this additional cost in the value of y
(t)
e , all other dual variables remain unchanged.

Let us slowly increase x starting from x(t−1) and simultaneously ye starting from 0. We do
this in infinitesimal steps over continuous time.

We are at any point in time for which still
∑

S : e∈S x
(t−1)
S < 1. We increase xS by dxS .

To account for the increased cost, we increase ye by dy at the same time. The dual objective
function increases by dy this way. This is at most (

∑
S : e∈S xS)dy because

∑
S : e∈S xS < 1.

Simultaneously, the primal objective function increases by (
∑

S : e∈S dxS). If we set dxS =
(xScS )dy for S such that e ∈ S, then these changes exactly match up.

Ideally, we would follow exactly this pattern. However, notice that we start from x(0) = 0,
so all increases would be 0. Therefore, let η > 0 be very small and set

dxS =
1

cS
(xS + η)dy .

This is a differential equation. We try a solution of the form xS = C1e
C2y + C3. Then we

have dxS
dy = C2(xS − C3), so C3 = −η, C1 = x

(t−1)
S + η, C2 = 1

cS
. This way

x
(t)
S + η = e

1
cS
y
(t)
e
(
x
(t−1)
S + η

)
,

where y
(t)
e is the smallest value such that x(t) is a feasible solution to the first t constraints of

the primal LP.

4 Algorithm for Fractional Online Set Cover

Let us now use the algorithmic approach above to design an algorithm for fractional online set
cover.

For our algorithm, we set η = 1
n and initialize all xS = 0. Whenever a new element e arrives,

we introduce the primal constraint
∑

S:e∈S xS ≥ 1 and a dual variable ye. We initialize ye = 0
and update it as follows. While

∑
S:e∈S xS < 1 do: For each S with e ∈ S increase xS by

dxS = 1
cS

(xS + η)dye.

Theorem 3.4. The algorithm is O(log n)-competitive for fractional online set cover.

Proof. We will verify the conditions of Lemma 3.3 with α = 2 and β = ln(n+ 1).
We start by property (a). Consider the t-th step, let element e arrive in this step. We have

to relate P (t)−P (t−1) =
∑

S cS(x
(t)
S −x

(t−1)
S ) to D(t)−D(t−1) = y

(t)
e . For set S such that e ∈ S,

we have

x
(t)
S − x

(t−1)
S =

∫ y
(t)
e

0

d

dy

(
e

y
cS

(
x(t−1)e + η

))
dy =

∫ y
(t)
e

0

1

cS

(
e

y
cS

(
x(t−1)e + η

))
dy .

For y ≤ y(t)e , e
y
cS

(
x
(t−1)
e + η

)
≤ x(t)e + η because x

(t)
e + η is exactly the value that we reach for

y = y
(t)
e . So∫ y

(t)
e

0

1

cS

(
e

y
cS

(
x(t−1)e + η

))
dy ≤

∫ y
(t)
e

0

1

cS

(
x(t)e + η

)
dy =

1

cS

(
x(t)e + η

)
y(t)e .



Algorithms and Uncertainty, Winter 2017/18 Lecture 3 (page 4 of 4)

This way, we can bound the primal increase by

P (t)−P (t−1) ≤
∑
S:e∈S

cS
1

cS

(
x(t)e + η

)
y(t)e =

∑
S:e∈S

x(t)e y
(t)
e +

∑
S:e∈S

ηy(t)e ≤ 2y(t)e = 2(D(t)−D(t−1)) ,

because
∑

S:e∈S x
(t)
e = 1 (otherwise we would have increased variables by too much) and∑

S:e∈S η ≤ nη = 1.
Now, we turn to property (b). Consider a fixed S. Let element e arrive in step t. By our

algorithm if e ∈ S then

ye = cS ln(x
(t)
S + η)− cS ln(x

(t−1)
S + η) ,

otherwise x
(t)
S = x

(t−1)
S .

So, when computing
∑

e∈S ye, we might as well take the sum over all T steps as follows

∑
e∈S

ye =

T∑
t=1

(
cS ln(x

(t)
S + η)− cS ln(x

(t−1)
S + η)

)
= cS ln

(
x
(T )
S + η

x
(0)
S + η

)
.

Furthermore, x
(0)
S ≥ 0 because variables are never negative and x

(T )
S ≤ 1 because it does not

make sense to increase variables beyond 1. So∑
e:e∈S

ye ≤ cS ln

(
1 + η

η

)
= cS ln(n+ 1) = βcS .

References

• N. Buchbinder, J. Naor: The Design of Competitive Online Algorithms via a Primal-
Dual Approach. Foundations and Trends in Theoretical Computer Science 3(2-3): 93-263
(2009)


